Tag Archives: space stations

Tweets from Space

Check out an article from Marotta Space Research.  It will be posted shortly at Space Safety Magazine.

Tweets from the High Frontier

Space.  It’s vast.  It’s majestic.  It’s so big it defies comprehension and, occasionally, description. But, what if space were full of people?  People with smartphones?  What if there were communities teeming with people living, working and playing up there?  They’d probably have lots to say about their experiences in orbit amongst the space colonies scattered across the high frontier.

Fair reader, you’re in luck.  I have traveled to the future and obtained a representative sample of tweets from space.  What follows are some examples of what humans might say about their lives in future space settlements:

Can’t believe how big this place is @IslandThree! There are actually rain clouds in here! And I can’t see down to the other side! #impressed

island31a16d-goodvista1a
image credit: Ed Sweet

Space settlements will be big – much bigger than contemporary ‘tin-can’ space stations like ISS or Tiangong-1.  The latest space settlement design, Kalpana One, envisions a cylinder 250 meters in diameter and 325 meters long – about the size of some of the largest cruise ships today.  Kalpana One can accommodate 3,000 people living in a business park-like setting.  This is a small space settlement – some of the larger designs are miles long and can host hundreds of thousands of people along with plenty of space for forests, farms, lakes and rivers.  All of these structures can be built in space using the same kinds of proven techniques that for decades have been used to construct massive supertankers in shipyards here on Earth.  The challenge is getting the labor and raw materials to start the first community.  Perhaps we should check the help-wanted ads…

Wanted: Agile people with strong upper bodies for lucrative work. Personalized spacesuit included. Join the elite asteroid miners today! #PR-HR

 

Immediate opening: 3D printer technician, must have experience with molten metals in a hazardous environment. Good pay, great views #Spiderfab-HR

The primary reason existing space stations are so small is that they are built on Earth and launched into space on rockets.  And rockets are expensive – it costs over $4,000 to launch one kilogram into space on the cheapest rocket available today.  But future space settlements will not be built on Earth and launched into space.  In-situ raw materials – collected primarily from asteroids – will be refined and shaped into the beams, panels, and windows that will form the settlement.  Just like sailing ships carried shovels and axes to the New World (not log cabins and farm silos), rockets will be used to carry the tools that will build settlements – not the settlements themselves.

Furthermore, the human resources paradigm of space travel is going to change. Currently, thousands of support personnel on Earth work to launch a handful of people into space.  That is set to change as new launch companies field rockets that require only a handful of support staff.  Better rockets and lower labor costs mean rockets can launch more frequently which will make them both safer and cheaper. Soon, a minority of people on Earth will work to support thousands of people living, working and playing in space.  And all those people will need to eat.  Are you getting hungry? Let’s see what’s on the menu in orbit…

For all you space cadet foodies: tried the @Bernal bioreactor algae pudding – gooey, weird and sweet. #spacecuisine

 

@IslandThree’s solar-roasted tilapia is “flaky, light and delicious” says @SnootyChef. Try the local veggies too! #spacecuisine

Many people enjoy the novelty of freeze-dried, packaged ‘space food’ (remember “astronaut ice cream” when you were kid on those trips to the museum?) but few people would want to eat that for the rest of their lives.  Luckily, space settlements will have the capability to grow fresh food.  In fact, space settlements will be required to grow much of their own food because of the size of their populations and the exorbitant cost to ship food up from Earth.  The unusual space environment and unique architecture of space colonies will allow for extremely productive agriculture.  First, the sun shines all day in space allowing for major energy inputs into production. Second, irrigation, fertilization, sowing and harvesting will be tightly controlled and integrated into the architecture of the settlement.  Third, pests, weather and other Earth-bound agricultural problems will not afflict farming in space.  All of these factors will combine to supercharge food and fiber production in space settlements.

So, we’ve arrived, we’ve got a good job and we’ve got plenty of food to eat.  But what is there to do for fun in space?  Contemporary space tourism companies are betting that people will pay millions of dollars to simply look out the window at Earth and spin around in zero-gravity for a week.  While that may appeal to some, most may quickly bore of it and start looking for more.  Recreation in a space settlement will offer many more options than what current space tourism provides.  Spherical pools floating in mid-air, piloting an actual starfighter, and literally flying like a bird are just a few of the possibilities….

Exclusively @IslandThree Resort: come fly a REAL X-Wing in ACTUAL space! Shoot drones and complete the obstacle course. Earn your Rebel wings! #RogueSquadron


Dive into the water, stroke stroke stroke then I shoot out the other side! Spherical pools @Bernal resort are crazy! #nextOlympicsport ?

 

image credit: David A. Hardy
image credit: David A. Hardy

That was fun but space settlements can serve a higher purpose than merely offering sustenance or recreation.  Throughout history there are numerous instances of people with similar religious or philosophical leanings banding together to form communities where they can pursue their interests without interference.  Space settlements offer the ultimate refuge for people seeking peace and  isolation.

Want to live in harmony with like-minded individuals? Do you feel a (much) higher calling? Come join us in the first temple in orbit! #L5Mormons

In fact, a recent film made the exact same conclusion (albeit in a wholly negative light) that space settlements can act as enclaves for like-minded individuals.

Human nature being what it is, it is unlikely that space settlement will be as innocuous, high-minded and fun as depicted in the selection of tweets above.  But the purpose of space settlement should not be to create utopias in the sky.  While they can expand the resource base of Earth and provide a higher standard of living for all who occupy them, space settlements will not by themselves eliminate war, greed, stupidity or laziness.  Rather, the purpose of space settlement is to expand the stage upon which the human drama plays out.  Space settlements will be little Earths full of love, hate, sadness and joy.  While the food there may be better and the recreation might be different, space settlements, at the end of the day, will be like little Earths: familiar and cozy.

 

Main Street in Space: Module Specifications

This post will describe the basic specifications of a single Main Street in Space (MSIS) module.

MSIS graphic 2.28.14

  • is a linear “spine” 10.5 meters in length and 3.6 meters in width at the longest and widest points.  It is designed to fiit into the expanded fairing of a Falcon 9.
  • does not produce artificial gravity and is not designed to rotate.
  • provides an internal cargo transport system. Each MSIS module has four 1-cubic meter cargo cubes that can transport themselves (using magnetic conduction motors) within the structure so materials can be moved between service ports and between modules.
  • generates at least 20 kilowatts of baseline electrical power using one deployable solar electrical panel (not shown). Includes active thermal management systems i.e. radiators which are derived from ISS technology (not shown).
  • has six service ports: four designed for docking and berthing “tenants” or “users” and two designed to attach to other MSIS modules so the station can grow indefinitely. Each service port provides connections for all necessary utilities.
  • each MSIS module has a remote manipulator arm (not shown) that is 1/4 the scale of Canadarm 2 on ISS. It can move itself between the power data grapple fixtures (PDGF) sites shown in the image.
  • has a dry mass of less than 13,000 kilograms.
  • estimated to cost $100,000,000 to construct, and $56,000,000 to launch into low earth orbit.

MSIS rad solar deployedThe image above shows one MSIS module with solar panel (blue) and radiator panel (brown) deployed, as well as a IDS docking port on the bottom.  A second module, without its panels deployed, is linked above the first one.

Basic specifications of Refinery

Refinery will demonstrate that useful products can be manufactured on an industrial scale from asteroidal and lunar raw materials.  Manufacturing using ‘in-situ’ raw materials is necessary in order to expand the human-centric LEO economy and eventually construct full-fledged space settlements.  It is infeasible to launch from Earth the millions of tons necessary to build a large space settlement – this material must be obtained from sources already above Earth’s gravity well e.g. the Moon and asteroids.

To start, some basic statistics are described.  See below for a more detailed discussion.

GEOindustrial 12.11.13 v2 labels 3
Sunward-facing side of Refinery

Refinery:

  • Is 100.96 meters long along its longest axis.
  • will be located in geosynchronous orbit (GEO).
  • Will produce 5962 kilograms of water per day, based upon the assumptions described below.
  • Will produce 271 kilograms of iron per day, based upon the assumptions described below.
  • Does not generate artificial gravity.  All operations aboard Refinery occur in zero-gee.
  • Is teleoperated by controllers on Earth and in Uptown.
  • Contains 2,313 cubic meters of sealed interior industrial space. Contains 330 cubic meters of pressurized habitable space intended for short visits by human maintenance crews.
  • Is estimated to generate 531 kilowatts of baseload electric power.
  • Contains three solar ovens, each focusing 154.36 kilowatts per second of solar thermal energy into a crucible one cubic meter in size (assuming average solar irradiance of 1.366 kw per square meter per second in geosynchronous orbit).
  • Can store 300 cubic meters/300,000 kilograms of water.  Can store 4516 cubic meters of finished industrial products.  Can store up to 6283 cubic meters of raw material.
  • Is estimated to mass 320,000 kilograms.
  • Is estimated to cost $4,150,000,000 to build and $2,037,440,000 to launch (using the Falcon Heavy at $6,367/kg to GTO)

Estimated Cost and Mass of Refinery

Unit Mass (kg) per unit Cost ($millions) per unit # of units total mass (kg) total cost of materials ($millions)
“BA330″ 20000 100 8 160,000 800
“Node” 10000 100 6 60,000 600
“Solar oven” 10000 100 3 30,000 300
“Power plant” 1000 100 20 20,000 2000
“Raw material bunker” 20000 50 1 20,000 50
“3D printer assembly bay” 10000 200 1 10,000 200
“Solar panels” 10000 100 2 20,000 200
Total 320,000 4150
GEOindustrial 12.11.13 v2 labels 2
Shadow side of Refinery – 1 of 2
GEOindustrial 12.11.13 labels 1
Shadow side of Refinery – 2 of 2

However, industrial scale manufacturing has never been done in space.  Therefore planning for Refinery requires a myriad of compromises and assumptions.

Compromises
–          In order to keep things simple, only water and iron will be produced at this first facility.  The iron will be printed into structural components using 3D printers.  These structural components will be used to repair and upgrade Uptown.  The water will be transported to Uptown as well, for drinking, cooking and washing and for conversion into oxygen and hydrogen using electrolysis machines.
–          To reduce complexity and save money, Refinery will be ‘lightly’ crewed without a permanent human presence aboard: manufacturing operations will be teleoperated from Earth and Uptown.  Refinery will have a single BA330 habitat module for occasional visits from maintenance crews.
–          For ease of design and construction, much of the chassis is composed of ‘off-the-shelf’ components like BA330s, Suncatcher CSPs, ISS-like solar panels and radiators.  On the other hand, much of the station will be custom-designed and built: the solar ovens, the connecting nodes, the raw material bunker and the 3D printer assembly bay.  Additionally, all of the equipment inside will be custom-designed and -built. Solar electric panels are included for back up power since maintenance crews will not be on-call 24/7 to maintain the Suncatchers, which are expected to need a lot of upkeep.
–          Refinery will be small, located in geosynchronous orbit and will not rotate to produce artificial gravity.  Because space manufacturing is unprecedented, it is prudent to start with a smaller, simpler facility that does not include the added complexity of generating artificial gravity.  However, operating in zero-gee presents other challenges: it will require specialized, custom-built equipment inside the facility to move materials without the aid of gravity.  It is believed that rotating Refinery will introduce engineering challenges that will distract from the primary purpose of the facility: to convert in-situ raw materials into useful goods.  Additionally, it is thought that expanding Refinery to a size that will justify the expense and complexity of artificial gravity will leave it too large and with too much excess capacity.  It is unclear today how much raw material can be delivered to the station within a given period of time.  Furthermore, simply incorporating Refinery back into the rotating structure of Uptown will force Uptown to move from its prime location in LEO up to GEO, far from the customers and markets of Earth.  Finally, there may be value in and of itself to exploring and perfecting zero-gee manufacturing.  In short, Refinery’s size, location and lack of gravity represent a series of trade-offs, all of which result in a facility that will best fulfill the goal of perfecting industrial scale space manufacturing using in-situ resources.

Assumptions
–          As mentioned above, Refinery will be located in geosynchronous orbit, separate from Uptown (which is located in low earth orbit).  In addition to the reason mentioned above, Refinery must be in GEO for its solar ovens to perform more efficiently in the constant sunlight of GEO vs. the intermittent sunlight of LEO.
–         Refinery assumes a raw material mix high in ice, nickel, iron and aluminum (e.g. dead comets and near earth asteroids) will be commercially available.  By the time Refinery is built, it will hopefully be possible to ‘order’ and have delivered to geosynchronous orbit intact asteroids up to 20 meters in diameter.  Planetary Resources and NASA are already working on the technology to do something like this.
–           Additional assumptions used to calculate the performance of Refinery:

Launch cost per kg to Uptown $2542 *
Cost of raw material per kg delivered to Uptown $2000
% of 1 kg of raw material that is water (ice) 20%
% of 1 kg raw material that is iron 10%
density of raw material 2710 kg/m3 **
number of hours operating per day 22
percent of raw material lost to inefficiencies 10%
*using Falcon Heavy
**http://en.wikipedia.org/wiki/Standard_asteroid_physical_characteristics#Density

At this point it is important to remember that the entire Bridging the Gap series of posts is a thought experiment – a speculative exercise intended to get one thinking about how to bridge the gap between the current generation of space stations and full fledged space settlements.  Refinery is not intended to be a final design. A large number of assumptions are inherent in any thought exercise.  That being said, the assumptions made here are grounded in the best available facts and are reasonably conservative, considering the knowledge available to the author at the time of writing. Your constructive feedback is welcomed.

Basic specifications for Uptown

The following post describes the basic specifications of the “Uptown” component of the next generation of space stations.

12.1.13 Final Version NGSSUptown:

  • is a ring 148 meters in diameter and 47.8 meters in depth (from “zero-gee viewing window” to tip of rear-most radiator panel).
  • rotates at two revolutions per minute, generating one-third Earth gravity and 15.5 meters/sec (approximately 34mph) angular velocity along the rim.
  • has a total internal pressurized volume of 18,360 cubic meters.
  • generates 2.2 megawatts of baseline electrical power.
  • can accomodate 100 people in 11 residence quarters:
    • 4 “tourist” quarters with a capacity for 4 tourists each, for a total of 16 people.
    • 7 “non-tourist” quarters with a capacity of 12 non-tourists each, for a total of 84 people.
  • provides 4,290 cubic meters of pressurized volume available for private non-residential use and 10,440 cubic meters of shared non-residential pressurized volume.
  • provides 1,200 cubic meters of shared zero-gee pressurized volume, including a 25 meter wide viewing window at the center of the station.
  • has a ‘dry’ or ‘vacant’ mass of 2,548,000 kilograms. ‘Vacant mass’ is the mass of the station not counting internal furnishings and non life-support related equipment and materials.
  • is estimated to cost $60,000,000,000 to build, not including launch costs.
  • will cost $6,489,756,000 to launch to low earth orbit, assuming a launch cost of $2,547 per kilogram – the proposed cost-per-kilogram to orbit for the Falcon Heavy.
  • will require at least 620,500 kilograms of water per year for life support purposes. Assuming 90% recycling (ISS currently recycles 93%), 62,050 kg of water per year required for life support.

Final Color Version NGSS

  • is composed of:
    • 28 BA330-like modules (green), each 9.5 meters in length and 6.7 meters in diameter and each with an internal pressurized volume of 330 cubic meters. Each masses 20,000 kilograms and is estimated to cost $100 million.
    • 24 custom-made ‘corridor’ modules (pink), each 19.3179 meters in length on the exterior side and 5 meters in width on the rimward side, each with a ‘foyer’ 6.7 meters long and 2 meters in width on the rimward side. Internal                 pressurized volume for each corridor is 330 cubic meters. Each masses 30,000 kilograms and is estimated to cost $200 million.

Final Color Version Shadowside NGSS

    • 24 ‘spine’ trusses (blue), each 18.9274 meters in length on the rimward facing side. Unpressurized but very high strength. ‘Corridor’ segments are connected to this spine, as well as the support trusses for the power plants and radiators. It is designed to transmit rotational forces while the station is under construction or being upgraded. Each masses 10,000 kilograms and is estimated to cost $100 million.
    • 88 Suncatcher-like concentrating solar power plants (yellow) each occupying a volume 6.9401 meters in diameter and 5 meters in depth. The Suncatchers will be parabolic, unlike the cylindrical shape shown in the graphic (cylinders are easier to sketch).  Each Suncatcher will generate 25 KW baseline power for a total of 2,200 KW produced while the station is facing the Sun.  This energy will charge batteries distributed throughout the corridor and BA330s modules for use when the station is transiting the nightside of the Earth. Each Suncatcher masses 1,000 kilograms and is estimated to cost $100 million.
    • 90 radiators (brown), each 125 square meters in size, each able to dissipate 149 KW of energy for a total dissipation capacity of 13,140 KW. Each masses 10,000 kilograms and is estimated to cost $100 million.
Unit Mass (kg) per unit Cost ($millions) per unit # of units total mass (kg) total cost of materials ($millions)
“BA330” 20,000 100 28 560,000 2800
“Corridor” 30,000 200 24 720,000 4800
“Spine truss” 10,000 100 24 240,000 2400
“Power plant” 1,000 100 88 88,000 8800
“Radiator” 10,000 100 90 900,000 9000
“Zero gee” 40,000 200 1 40,000 200
Total 2,548,000 28000
Note: All figures are estimates. Materials cost is more than doubled to $60B to account for R&D and operations costs.

Get the model on Sketchup and check it out for yourself.  Specs on Refinery are coming soon!

The Next Generation of Space Stations: A Conceptual Design

As described in previous posts, Marotta Space Research has created a conceptual design for the next generation of space stations.  This conceptual design achieves the strategic goals necessary to bridge the gap between the current crop of space stations and what is needed to build full-fledged space settlements.

The Answer Is...Additional considerations were made when crafting this design:

  • Existing technologies were used to the greatest extent possible.  In fact, the station is essentially a larger and unique configuration of existing technology that will be commercially available in the next ten years (e.g. BA330 modules) or is currently available but needs to be reverse engineered for use in orbit (e.g. Suncatcher CSP power plants).
  • The station is actually two stations:
    • a smaller teleoperated station in geosynchronous orbit that converts in-situ raw materials into water, oxygen, hydrogen, and iron structural components.  This part of the station is tentatively called “Refinery.”
    • a much larger station in low to medium earth orbit hosting the inhabited portions tentatively called “Uptown.”

Refinery requires the constant sunlight of geosynchronous orbit in order to most efficiently convert in-situ materials into finished products.  However, Uptown must be located in a lower orbit close to the customer base and markets of Earth in order to maximize its economic output.  Therefore, separating Refinery from Uptown in different orbits achieves the strategic goals of maximizing both economic output and manufacturing productivity.

NGSS answer graphic

A final note: this is a concept.  This is not a final design.  Much of the work here is speculative and represents an extremely ambitious proposal.  In fact, the entire purpose of this series of blog posts is not to create a final space station design.  Clearly an engineering project of the scale proposed here cannot be completed with only a few paragraphs and some rudimentary graphics.  Rather, the purpose of this blog is to spur discussion and advance the cause of space settlement.  It is hoped that these plans will get people thinking about what comes after the Bigelow stations and how we can move humanity closer to full-fledged space settlements. With that in mind, your constructive comments are welcomed.

This is a concept, not a final design. It is intended to spur discussion and further the development of more advanced space stations.

Taking a break, considering a mini CELSS ‘experiment’

I just read the Orbital Space Settlement Tasks page on Al Globus’ website. Very interesting reading. I think I might try this mini Closed Ecological Life Support System ‘experiment’:

Do research into closed ecological life support systems by placing small amounts of soil, plants, and microbes in sealed jars. See how long they can survive with just sunlight coming in.

Ok so a quick google search of “closed jar terrariums” shows that this is actually pretty common. This person has a pretty cool site on how to make them using moss. Looks likeactivated carbon is an essential ingredient – possibly to filter out contaminants?

Closed jar moss terrariums. Credit: http://www.instructables.com/file/FKB3U7HHH2VNBLP
Closed jar moss terrariums. Credit: http://www.instructables.com/file/FKB3U7HHH2VNBLP

How nice would it be to be able to walk barefoot over soft moss and pick little flowers growing in greenhouses in the next generation of space stations?

 

Sneak Preview!

As alluded to in earlier posts, Marotta Space Research is working on a conceptual design for the next generation of space stations. Here is what we have so far:

Sneak preview of a conceptual design for the next generation of space stations.
Sneak preview of a conceptual design for the next generation of space stations.

More to come soon!

The solution to keeping the lights on in space.

The previous post described how difficult it will be to power the next generation of space stations exclusively with solar electric panels.  Other options were investigated including nuclear power, hydrogen fuel cells (like those used on the Space Shuttles), electrodynamic tethers and, finally, concentrating solar power or ‘CSP.’

In short, a space station proposal being drawn up right now will use 88 concentrating solar power plants of a type similar to the Suncatcher CSP designed by Stirling Energy Systems in the last decade.

Stirling-Energy-Suncatcher-e1285022946537Each of these power plants will generate 25kW for a total of 2,200 kW.  Each  power plant will weigh around 200 kilograms, not counting the reflective mirrors and support structure.  While the power plants will be launched up from Earth, the reflective mirrors and support structure will manufactured in space from in-situ resources.  This is because they will be made of iron and/or aluminum, contain no moving parts and thus should be relatively simple to make on orbit.

This technology is an ideal solution.  While it will require research to perfect (unlike solar electric panels), and probably lots of maintenance once installed, it offers high power output while having relatively low mass, low volume and low complexity.  While not as powerful as nuclear energy, it is not nearly as controversial and thus easier to get approval to launch into orbit.  It is tailor-made for the next generation of space stations.

The Big Five Characteristics

In previous posts the rationale for space settlement was discussed, as well as how the next generation of space stations can attract people in order to be successful.  This post will discuss the characteristics the next generation of space stations must have in order to advance the causes of space settlement and developing a human-centric LEO economy.

The next generation of space stations must:

  1. Be truly permanent
  2. Rotate to provide artificial gravity
  3. Support a larger population
  4. Produce
  5. Be flexible

Let’s take these one by one:

1. Be truly permanent – the next generation of space stations, or next gen, must be designed to be repaired and upgraded in space.  Components should be modular and subsystems should be able to be swapped out and upgraded as needs require.  Structural members should be composed of materials that can be repaired using in-space resources.  In short, the next gen should be thought of less as a vessel with a finite life but more like a settlement or a building that can be repaired, upgraded and changed over time.

2. Rotate to provide artificial gravity – the next gen of space stations must have gravity in order to provide a comfortable quality of life and thus persuade the average person to live in space.  While artificial gravity has been a mainstay of science fiction for decades, and is assumed to be possible using centripedal acceleration via rotating structures in space, it has never been attempted in real life.  The next gen must incorporate some level of artificial gravity in order to prove the concept so it can be refined for later, full-scale space settlements like Kalpana One.

3. Support a larger population – in keeping with the idea that the next gen of space stations are settlements, and not vessels, we ought to call the people living, visiting and working there a ‘population’ as opposed to a ‘crew.’  Furthermore, the next gen must be able to support a larger population in order to prove that a large number of people can live and thrive in space.  The challenges and opportunities of having dozens of people in space are far greater than having less than ten people in ISS.  Thus, the next generation of space stations should be designed to support a population of at least 100 people.

The next generation space station will support a crew population of at least 100 people.

4. Produce – the next gen of space stations must demonstrate, on a commercial-scale, the ability to extract useful products from raw materials obtained in space, refine those products into salable goods or services and then assemble them into other, more complex items.  For instance, extracting water from captured comets (perhaps delivered to the station by Planetary Resources) and manufacturing liquid oxygen to refuel a government mission to Mars. Or, later on, extracting silicon from lunar regolith (perhaps delivered by Liftport via a lunar space elevator) to produce solar panels to install into a satellite that is docked with the station. Whatever the method, it will be necessary to show that space manufacturing is feasible to advance the cause of space settlement.  It will be necessary to use local materials to construct full-scale space settlements because the tonnage required is too high to boost everything up from Earth. The nextgen must prove that local materials can be refined into usable goods, and it must do so at a profit in order to be sustainable.

5. Be flexible – finally, the next gen of space stations must be able to accommodate a variety of different users and uses within the same facility (as much as is feasible).  Again, in keeping with the idea that this is settlement, and not a single-use vessel, it must be able to accommodate recreation, manufacturing, military, R&D, etc. And, it must be flexible enough to be rearranged internally to accommodate as-yet-unforeseen users and needs.