Tag Archives: reusable launch vehicles

Government Developed Rocketships are Insane

Einstein said the definition of insanity is doing the same thing over and over again and hoping for different results.  In the past thirty years the United States government has made three attempts to develop a special kind of rocket called a reusable launch vehicle.  RLVs are the holy grail of aerospace engineers: they are a type of rocketship that can be reused many times greatly reducing the cost to access space.  Think airplane to space rather than big shiny tube full of explosives to space.

atlas-launch-muos-1920
Conventional rockets are not reusable.

Three times in recent memory the U.S. has tried to build RLVs.  Three times it has failed:

Space Shuttle – Intended to be reusable and reduce the cost of access to space.  Turns out it was just as expensive as previous rockets, and probably more dangerous.  Total program cost: $209 Billion.  Tragically, 14 astronauts lost their lives as a result of this failed experiment in reusability.

STS1white tank

National Aerospace Plane – “By the time of its cancellation [in 1993], the government had admitted to making a $1.7 billion investment in the National Aerospace Plane, but parts of the R&D was highly secret and the official costs were probably somewhat higher.”

RLV Attempt #2: the National Aerospace Plane.
RLV Attempt #2: the National Aerospace Plane.

X-33/VentureStar – “By early 2001, the program was officially cancelled – five years and $1.5 billion down the line. Official reasons for the cancellation was a disagreement over extra funding from both industry partners, NASA and Lockheed Martin. However, the recommendation of the composite tank to keep costs down to prospective commercial interest was the main reason given to workers.”

RLV Attempt #3: X-33/VentureStar
RLV Attempt #3: X-33/VentureStar

And now the Department of Defense is messing around with what I like to call “Shuttle lite” in the form of the X-37.

Reusability is a worthy goal.  We as a country and as a species should pursue reusable launch vehicles in order to more quickly and cheaply open up the universe for exploration and settlement.

We just need to use a different strategy.  Going the government contracting route when it has already failed three times is, like Einstein said, pretty much insane.


please_support_me_on_patreon__by_skie_maree-d9at4nz

The Next 15 Years of Space Development: Our Predictions

 At one point or another every space enthusiast asks the question: when can I get my trip to the Moon? When will I get to walk on Mars and mine asteroids?  When will I be able to visit a gigantic space settlement and check in to my zero-gravity hotel room? In short, when is all this space stuff going to become real?

When am I gonna get to go to space?!? Credit: iStockphoto
When am I gonna get to go to space?!? Credit: iStockphoto

Loyal readers know that This Orbital Life likes to take a comprehensive view of the space development arena.  We cover technology and engineering but also financial, political and societal developments related to space.  We’re not just a news site; we’re also a discussion and analysis site.  As such, This Orbital Life is well-placed to take a dispassionate, holistic view of the current space development field and make some long-term predictions.

Some notes before we dig in: this list is a sampling and does not include every activity or firm in the commercial space universe.  It is biased to those companies and organizations that This Orbital Life thinks has the best chance of turning their plans into reality.  So you will not see companies like Golden Spike or Deep Space Industries in this article.  This Orbital Life wishes them all the best but their absence is a sober acceptance of the fact that these firms are poorly financed and unlikely to achieve their goals.  You will also not see a mention of exotic vaporware like single stage to orbit, laser-propelled launch vehicles, space elevators, or other things that are unlikely to come to fruition in the next fifteen years.  Finally, you’ll notice that many of these items (like the SLS Exploration Mission 1) appear on the timeline later than they’re currently scheduled to occur.  This is not a mistake; it is our prediction as to when these things will actually happen.

With that disclaimer, let’s get to the predictions.  Here they are, starting a few years in the future:

2018Launch_America_Commercial_Crew

  • Commercial Crew first flights. Boeing and SpaceX both successfully debut the CST-100 and crewed Dragon.  Commercial Crew is so critical because it is the catalyst that will kick off a new human presence in outer space.  Once crew transportation is commercially available, commercial space stations become viable, which will really jumpstart the human presence in outer space.
  • Planetary Resources identifies mining targets.  Planetary Resources, using their custom-made remote sensing orbital telescopes, compiles a list of asteroids that are appropriate for further analysis and, potentially, mining.  Asteroid mining will provide the raw materials to fuel human expansion into outer space.
  • Virgin Galactic begins regularly scheduled suborbital tourist flights.  Space tourism is the killer app that will expose more and more people to the wonders of space flight and increase the general public’s comfort with the idea of living and working in space.

2019

  • SLS/Orion Exploration Mission 1.  NASA successfully launches an uncrewed Orion capsule around the Moon using an SLS Block 1 configuration.  A year late but better late than never.
  • A private company tests moon mining.  A new company, probably a cooperative venture between Moon Xpress and several other Google Lunar Xprize contestants, lands a small rover on the moon and tests extraction and production of water on the lunar surface.  A kilogram or two of water is successfully produced.  NASA supports the effort via unfunded Space Act Agreements and relatively inexpensive data purchases.  Like asteroid mining above, moon mining will provide the raw material (fuel, water, radiation shielding, etc) to catalyze space development and exploration.

2020

The proposed Bigelow Station. Nice, but it would be nice to have a back-up plan too. Credit: Bigelow Aerospace
The first commercial space station. Credit: Bigelow Aerospace
  • The first commercial space station is established.  Lofted into orbit by a Falcon Heavy, Bigelow Aerospace opens a single, self-sufficient BA-330 module for business.  The first tenants are smaller national space programs, notably Brazil and the United Arab Emirates.  The space station is supplied by Commercial Crew launchers Boeing and SpaceX.
  • Asteroid Redirect Mission (ARM) is launched.  Congress and the space-industrial complex push NASA to pursue this mission in order to justify launches for the SLS/Orion vehicle. ARM will reach its destination in 2022 and astronauts will explore the retrieved asteroid in 2026.

2021

  • Additional private firms begin offering suborbital tourist flights.  Spurred by the success of Virgin Galactic, several other firms begin offering tourist flights to suborbital space, as well as other services e.g. atmospheric science and ballistic package delivery.  Prices to ‘suborbit’ begin falling.

2022

si-NASA
The Asteroid Redirect Mission will be a success. Credit: NASA
  • ARM is a success! Those well-funded geniuses at NASA successfully pluck a boulder from an asteroid.  The craft starts the slow journey back to lunar orbit where a team of astronauts will explore the boulder in 2026.
  • SLS/Orion Exploration Mission 2. EM-2 was originally scheduled for 2026 and was intended to rendezvous with the ARM-captured asteroid.  But that would have meant an eight year gap between SLS launches.  Therefore, under pressure from the President and the space-industrial complex, Congress hastily agrees to fund this additional mission in order to maintain some semblance of launch cadence for the SLS program.  The mission is a stunt, probably sending astronauts around the Moon or some other useless gesture.  The ARM mission will become EM-3.

2023

  • Satellite servicing becomes viable.  Commercial satellite providers begin launching ‘birds’ that can be refueled and upgraded by robotic craft controlled by satellite servicing companies.  The extra fuel and supplies are launched from Earth.
  • Planetary Resources samples an asteroid.  It is the first private company to land on an asteroid.  Furthermore, it proves that there are commercially viable amounts of raw materials present on the asteroid, making this particular asteroid an appropriate target for space mining.  Planetary Resources attempts to ‘claim’ the asteroid in certain jurisdictions.

2024

  • The $1000 per-pound-to-orbit barrier is broken. For decades the cost of launching items into space has been informally gauged by the cost to send one pound into orbit.  This year, the price drops below $1000, due to the increasing use of reusable first stages and widespread availability of frequent space launches.  This is a psychologically important barrier as many experts believe it is the price at which large-scale space commercialization becomes feasible.
Space disasters, like the Columbia accident, are inevitable.
Space disasters, like the Columbia accident, are inevitable.
  • Something terrible happens.  There is a disaster related to space development.  Perhaps it is a launch failure or an explosive decompression on a space station. Whatever it is, it’s bad: people die, businesses fail and the government investigates.  Ultimately, however, space development continues to move forward.

2025

  • Press begins referring to the ‘space station industry’.  At any one time there are more than a dozen companies offering to rent space on three separate commercially-run space stations in low earth orbit. In addition to the six astronauts at the government-run International Space Station, there are an additional twenty-four to thirty astronauts on the private stations.

2026

  • SLS/Orion Exploration Mission 3. Astronauts travel to and successfully explore the ARM-captured asteroid in lunar orbit.  They return to Earth safely.  For a few months in 2026, NASA regains its glory days.  Millions of people follow the mission and enthusiasm for human space exploration reaches levels unseen since the Shuttle program.

2027

  • The International Mars Program is established.  Leveraging the excitement generated by last year’s asteroid mission, the U.S. government establishes a coalition of nations to explore Mars. It is modelled on the International Space Station partnership. It includes all the original ISS partners as well as China, India, Brazil and the United Arab Emirates.
  • NASA rents space on a commercial space station.  Rather than build a replacement to the ISS, NASA signs a contract to rent several hundred cubic meters on a new, separate commercial space station as part of the ‘Commercial Station’ program.

2028

  • ISS is deorbited. After thirty years on orbit, the International Space Station program comes to an end.

2029

  • A private company relocates an asteroid.  Planetary Resources, or a company like it, successfully captures a small ice-bearing asteroid and, over the course of a few months, moves it to a small processing craft.  Once there, water is successfully extracted and converted into liquid oxygen and liquid hydrogen.
  • NASA seeks to purchase fuel produced from in-space resources.  NASA releases a request-for-proposals seeking several tons of rocket fuel and liquid water derived from in-space resources; either asteroidal or lunar.  The ‘Commercial Resources’ program, as it is called, is intended to enable Mars exploration by ‘living off the land’ in space, rather than launching everything up from Earth.

2030

  • Commercial launches are common, safe and regularly scheduled.  Between the burgeoning space station industry, nascent space mining ventures, and the International Mars Program, there is robust demand for launch services from both the public and private sectors.  Launches occur on a timetable and both cargo and passenger fares are standardized, like the airline industry.  Due to regular launch tempos, surging demand and constant innovation from numerous competitors, prices continue to fall, approaching $500 per pound to orbit.
A 'proto-space settlement'
A ‘proto-space settlement’
  • Press hails the first ‘space settlement.’ Actually a very large space station it nevertheless incorporates technologies that will pave the way to a true space settlement: it rotates to provide artificial gravity, is designed to be upgrade-able and repair-able, and can accommodate larger industrial processes to extract and refine extraterrestrial resources.   With a capacity of 100 people, it is the biggest structure in space and will pave the way for larger, more capable stations.

What do you think? Be sure to comment! (scroll to the top of the page to leave comments)