Tag Archives: Private space

Main Street in Space: Module Specifications

This post will describe the basic specifications of a single Main Street in Space (MSIS) module.

MSIS graphic 2.28.14

  • is a linear “spine” 10.5 meters in length and 3.6 meters in width at the longest and widest points.  It is designed to fiit into the expanded fairing of a Falcon 9.
  • does not produce artificial gravity and is not designed to rotate.
  • provides an internal cargo transport system. Each MSIS module has four 1-cubic meter cargo cubes that can transport themselves (using magnetic conduction motors) within the structure so materials can be moved between service ports and between modules.
  • generates at least 20 kilowatts of baseline electrical power using one deployable solar electrical panel (not shown). Includes active thermal management systems i.e. radiators which are derived from ISS technology (not shown).
  • has six service ports: four designed for docking and berthing “tenants” or “users” and two designed to attach to other MSIS modules so the station can grow indefinitely. Each service port provides connections for all necessary utilities.
  • each MSIS module has a remote manipulator arm (not shown) that is 1/4 the scale of Canadarm 2 on ISS. It can move itself between the power data grapple fixtures (PDGF) sites shown in the image.
  • has a dry mass of less than 13,000 kilograms.
  • estimated to cost $100,000,000 to construct, and $56,000,000 to launch into low earth orbit.

MSIS rad solar deployedThe image above shows one MSIS module with solar panel (blue) and radiator panel (brown) deployed, as well as a IDS docking port on the bottom.  A second module, without its panels deployed, is linked above the first one.

The solution to keeping the lights on in space.

The previous post described how difficult it will be to power the next generation of space stations exclusively with solar electric panels.  Other options were investigated including nuclear power, hydrogen fuel cells (like those used on the Space Shuttles), electrodynamic tethers and, finally, concentrating solar power or ‘CSP.’

In short, a space station proposal being drawn up right now will use 88 concentrating solar power plants of a type similar to the Suncatcher CSP designed by Stirling Energy Systems in the last decade.

Stirling-Energy-Suncatcher-e1285022946537Each of these power plants will generate 25kW for a total of 2,200 kW.  Each  power plant will weigh around 200 kilograms, not counting the reflective mirrors and support structure.  While the power plants will be launched up from Earth, the reflective mirrors and support structure will manufactured in space from in-situ resources.  This is because they will be made of iron and/or aluminum, contain no moving parts and thus should be relatively simple to make on orbit.

This technology is an ideal solution.  While it will require research to perfect (unlike solar electric panels), and probably lots of maintenance once installed, it offers high power output while having relatively low mass, low volume and low complexity.  While not as powerful as nuclear energy, it is not nearly as controversial and thus easier to get approval to launch into orbit.  It is tailor-made for the next generation of space stations.

Part 3 of 4: The pros & cons of Capturing an Asteroid to deliver raw materials to orbit

The first two posts in this series have focused on the pros and cons of using rockets and mass drivers to collect raw materials in orbit. This post will discuss the merits of capturing an asteroid using what I’m calling the Planetary Resources (PR) method. As far as I can tell, PR will capture whole asteroids (small ones) and somehow drag them back to more convenient orbits closer to Earth for processing (as opposed to strip-mining them or processing the ore on-site).

How PR will (probably) capture asteroids. Credit: Planetary Resources

Let’s start with the advantages:

  • Easier transportation to destination – The more accurate way to state this is that it takes less of a change in velocity (delta-v) to move asteroids around the Earth-Moon system than it does to haul materials up from the Moon or Earth. This is because asteroids are already at the top of the cislunar gravity well. In other words, one should expend less fuel moving a typical asteroid from its orbit into, say, geosynchronous orbit, than one would on moving an equivalent mass from the lunar surface to geosynchronous orbit.

This is a HUGE advantage. Perhaps an Earth-bound analogy will drive home the point. Consider two mines on Earth. In one, the ore is laying on the surface and just has to be picked up and trucked to the processing facility. This is the PR method – snagging an asteroid and sliding it to where it needs to go. Now, consider another mine where the ore is buried deep underground. First one digs up the ore and hauls it to the surface and then it has to be trucked to the processing facility. Obviously it’s a lot more work to move all that heavy stuff around but this is what happens when ore is collected from the Earth or the Moon and then transported into orbit. By eliminating the need to haul the material up out of a gravity well, Planetary Resources has a great advantage over the other methods.

  • Provides massive infusions of raw material – Thousands of tons of material will be delivered immediately upon the arrival of a near-earth asteroid at the destination. No other technology known today has the capacity to deliver thousands of tons in one delivery. Rockets can, at most, deliver tens of tons of material. Space elevators and mass drivers provide a continuous trickle of material that, over time, can add up to thousands (even millions) of tons –but it requires patience.  If you need a lot of space rocks and you need them right away, asteroid capture may be the way to go.
  • Provides goodies – Asteroids could more easily provide resources that are not known to exist in great quantities on the Moon and are difficult to haul up from Earth e.g. rare platinum group metals, volatiles or even hydrocarbons.

But what about those disadvantages:

  • Lots of unknowns – No one has ever captured, or barely even landed on an asteroid. Pristine asteroidal material has never been examined on Earth. The composition of different classes of asteroids is essentially unknown and manipulating asteroids is, at this point, a best guess. Can a rubble pile asteroid be de-spun without it falling apart? Can a volatile-rich asteroid be “bagged” without all the water and oxygen boiling off and popping the containment unit? Mastering the capture and processing of asteroids will take many years, as well as the coordination of the swarms of robots it will take to accomplish these tasks. It may be decades before these techniques are commercially viable, especially when compared to the more familiar technologies required to exploit lunar resources.

“A mine is just a hole in the ground owned by a liar”

– Mark Twain

  • Long delays between deliveries – While a mass driver or space elevator provides a steady continuous trickle of material to orbit, asteroid capture provides huge shipments once every two or three years. This time lag will  complicate processing as facilities will have to be designed to store or digest a huge amount of material when the asteroid arrives but will then lay fallow while they wait for the next shipment. It could lead to inefficiencies.
  • Potential public relations problem – I’m not going to spill too much e-ink on this topic but it is possible that the same Luddites who oppose nuclear-powered space probes could oppose and potentially derail or delay asteroid mining because they fear “killer space rocks” being positioned closer to the Earth. Even though putting them into a more convenient orbit makes it easier for them to be deflected and diverted should something go wrong.

So, lots of pros and cons for this item. Stay tuned for the final installment regarding lunar space elevators.

 

Part 2 of 4: The pros & cons of using Mass Drivers to deliver raw materials to orbit

In a previous post I described the pros and cons of using rockets to deliver raw materials to orbit. And, in the post before that, I explained that this part of a series of posts discussing the best ways to amass raw materials in orbit needed for space development. In this post, I will discuss the pros and cons of using mass drivers to accumulate a resource base in Earth orbit.

The biggest advantage to using mass drivers is that they are very efficient. That is, once they are set up and functioning well, no fuel is required to launch payloads into orbit. In theory, the mass driver can launch hundreds of times its own weight using only electricity.

Furthermore, extensive research has been completed on mass drivers, and their earthbound cousin, the railgun. The Space Studies Institute and Gerard K. O’Neill himself built a small mass driver in the 1970s basically proving that this idea will work. And today, the US Navy is working on an electromagnetic railgun to fire artillery shells which is basically a mass driver.

Gerard K. O’Neill and his team with a working mass driver prototype in the 1970s. Courtesy: SSI

In practice, however, one cannot be sure that a mass driver will function as promised. It is, after all, a machine and machines require maintenance and upkeep. I am skeptical that mass drivers can function anywhere near their peak performance without a human presence on the moon to maintain them.

Which brings us to the biggest disadvantage to using mass drivers: they require a massive upfront investment in infrastructure. This infrastructure includes not only the kilometer-scale mass drivers but also megawatt-scale power systems (probably nuclear due to the long lunar nights – which means additional headaches), loading machinery, canister processing machinery and all the subsystems needed to make this structure work. Essentially, one must build a minor lunar base in order to construct, and possibly operate, a mass driver on the moon*.

So, bottom line, mass drivers are extremely efficient, but require a massive upfront investment in order to work.

*The fact that a mass driver may require a lunar base could be construed as either a positive or a negative, depending on one’s point of view. Positive because, hey, who doesn’t like moon bases, right? Negative because moon bases are expensive and, in this case, would simply be an overhead cost as we establish our raw material delivery system.

Part I: The pros and cons of Rockets for delivering orbital raw materials

In a previous post I described the four new options for amassing raw materials in orbit for the purpose of space development. They are: using rockets to lift stuff up from Earth, using mass drivers on the moon to shoot regolith into orbit, capturing asteroids a la Planetary Resources, and constructing a lunar space elevator a la LiftPort to transfer lunar ore into orbit. In this post I will describe the basic advantages and disadvantages of each method.

The goal here is to determine the fastest and most cost-efficient method for collecting hundreds of tons of raw material in Earth orbit. Hundreds of tons – if not thousands – are necessary to manufacture the large structures necessary to develop space i.e. to build a self-sustainable and self-replicating civilization in orbit. Let’s talk pros and cons one by one:

I. Rockets – There are several big benefits to using rockets:

  1. Proven technology with a deep market: rockets are proven and there are lots of vendors to choose from. It’s the “devil we know” versus the other technologies which are all unproven.
  2. Direct to orbit: rockets are the only option available to boost items directly from the Earth’s surface. This, in theory, allows one to boost finished structures to orbit, skipping the raw material/manufacturing stage. This is both a blessing and a curse: while having some finished products in orbit will be useful (Bigelow modules and 3d printers immediately come to mind), especially in the early stages of space development, ultimately the goal is to build an indigenous manufacturing base in orbit, not just boost everything up from Earth. Also, rockets are the only way to get people into orbit!

However, the major drawback to using rockets is, of course, their expense. Rockets are ultimately too expensive to boost anything except the highest value cargo. This is reef that every space development has foundered on since the beginning of the space age.

Future posts will discuss mass drivers, asteroid capture and lunar space elevators.

An Expanding Menu: Rockets, Mass Drivers, Asteroid Capture and Space Elevators

Since the halcyon days of Gerard K. O’Neill and his grand visions of massive solar power satellites and palatial space colonies, space cadets the world over have pondered the best way to collect the raw materials necessary to construct such structures in orbit. Many, including myself, deferred to Mr. O’Neill’s assertion that the lunar mass driver is the best mechanism to amass a raw material base in orbit. Indeed, there is something elegant in the idea of combining thousands of tiny cargos to form one large resource pile, as opposed to the brute force concept of launching one gargantuan payload at great expense. On the one hand, space enthusiasts have the familiar image of an explosive rocket breaking the surly bonds of Earth (and occasionally failing) in order to put a complete payload into orbit. But O’Neill offered a new, more tranquil vision: rows of silent, miles-long electromagnetic catapults safely and efficiently zooming thousands of tiny payloads into orbit over many months.

Mass Drivers….

Nice day for a lunar picnic next to the serene mass driver. Courtesy of the Lunar Institute. Credit: Pat Rawlings.

….Versus Rockets.

Hot dog! Look at that mother go! Yipppee! I just wish it weren’t so risky and inefficient…

But how times have changed. Today we have two additional visions. The first involves Planetary Resources and asteroid capture. The second involves LiftPort and the lunar space elevator.

As the readers of this blog know, Planetary Resources is a well-funded and well-staffed outfit based in Seattle, WA. They hope to develop new technology and methods to eventually capture and mine near-earth asteroids. LiftPort, the space elevator company, is also based in Seattle, WA and is slightly less well-funded and well-staffed than Planetary Resources. However, I would argue that LiftPort’s ideas and vision generate just as much enthusiasm as do the ideas of Planetary Resources. Furthermore, LiftPort has already failed and resurrected itself AND has successfully crowd-sourced innovation in the past. These two factors alone (perseverance in the face of failure and the ability to manage far-flung groups of researchers) indicate that LiftPort has the potential for success*. In fact, one could argue that Planetary Resources, with its venture capital and in-house engineering staff, represents the old style (1990s) of aerospace innovation while LiftPort, with its open(er)-source development plan and bootstrapping culture represents a new way, or at least a different way, of generating innovation.  

LiftPort, after an ignominious bankruptcy in 2007, is back from the dead, having just raised almost $80,000 over $110,000 of R&D funding in less than a month on, of all places, Kickstarter.

But let’s get to brass tacks – which method is the best way to support space development: rockets, mass drivers, capturing asteroids or lunar space elevators? In future posts I will discuss how each of these options have benefits and drawbacks to amassing raw materials in orbit. UPDATE: Part 1 of 4 (Rockets) is linked above.

*Full disclosure: I used to work for LiftPort. I quit in 2004, thinking at the time that the company was doomed. In  2007, I was proven right. But now, in 2012, I’m not too sure. LiftPort is scrappy and their vision is mesmerizing. Even if they don’t build a space elevator, they might generate enough IP and interest to get bought up by Google X Labs or some other group of yuppie-genius billionaires who will then carry the LiftPort vision to fruition.

Big news: Boeing “all-electric” satellites

File this under “news nerds need to know:” Boeing’s new 702SP satellite will use on-board electric ion engines to travel from geosynchronous transfer orbit (GTO) to it’s final location in geosynchronous orbit. In the past satellites have typically used a separate booster for final orbital insertion. Electric engines have long been used for station-keeping, but this is the first time they will be used for major orbital maneuvers on a commercial satellite.

This is both good and bad news. It’s good for obvious reasons: commercial industry is becoming more confident with electric engine technology and is attempting to incorporate it into nongovernmental (i.e. more risky) payloads. I hope to see greater use of this technology moving forward.

This is bad news, however, because it could signal the end of what was a promising business opportunity in space: interorbital space transfer shuttles or “tugs.”

A proposed space tug providing support to the Hubble Space Telescope - an obsolete idea?

For decades scientists and engineers have proposed space tugs as a way to reduce launch costs to geosynchronous orbit and, more recently, as a way to make money. Now that Boeing has figured out a way to incorporate the ‘tug technology’ directly into the satellite, the space tug line-of-business may be closing, or at least drastically reduced. As capitalists we must applaud greater efficiency in the space economy, but as space enthusiasts we feel a bit disappointed that now there is one less (obvious) opportunity for entrepreneurship in orbit. However, in time, this technological development may lead to something better that no one has thought of yet. Progress marches on!

 

The Dragon Flyer is a good investment.

By now, regular readers of this blog know that the Dragon Flyer will be the first privately-financed deep space mission. It will return an intact, pristine asteroid to Earth. Not only is this something that the scientific community wants, but Dragon Flyer will do it better than previous missions, and at a lower cost.

The Dragon Flyer is also a good investment providing more than a 30% return on capital. This assumes a <$250 million total mission cost and a $700 million revenue event (i.e. when the customer pays for the asteroid once it is delivered). The investment time horizon is four years.

The Dragon Flyer will provide a 30% return on capital for a forward-thinking aerospace corporation.

A 30% return is probably too low to attract venture capitalists. However, it is high enough to attract investment from mining, aerospace or utility corporations. See the chart below:

Type of Investor Internal Rate of Return Expected by Investor Total Paid to Investor over Four Year Time Horizon Profit Realized By The Dragon Flyer*
Free money 0% $0 $456,300,000
Kind venture capitalist 41% $719,534,390.36 -$263,234,390
Realistic venture capitalist >100% $3,655,500,000.00 -$3,199,200,000
Commercial gold mine ~30% $452,331,570.00 $3,968,430
Aerospace project e.g. Airbus 380 <19% $245,001,165.48 $211,298,835
New nuclear power plant <17% $212,966,313.08 $243,333,68
*For the purposes of this chart, the investor’s IRR is essentially the “interest rate” at which the venture borrows money from the investor i.e. no additional fees or costs are included in the borrowing costs.


The Dragon Flyer will provide a rate of return higher than recent aerospace projects like the Airbus 380 and will require a far lower capital outlay. In conclusion, the Dragon Flyer is an attractive project for a forward-thinking, innovative aerospace corporation.

To read more about the investment potential of the Dragon Flyer, download the full paper here for free.

Another Dragon delay – no big deal.

Another month, another Dragon launch delay. The second Dragon-ISS test flight (and third Falcon 9 flight, ever) will not occur before March 20. It was originally scheduled for January. But do I look worried? Not at all. This flight will combine two test flights into one and thus requires “an insane amount” of testing and preparation, as described by Elon Musk. This need for testing and combining two flights into one is the reason for the delay. However, because it will kill two birds with one stone, accomplish two test flights at once, SpaceX may actually be ahead of its development schedule after a successful late March/early April launch. So this delay, in the long run, is no big deal.

What, me worry (about the Dragon development schedule)?

Conspiracy theory alert: could SpaceX be planning its first cargo run to ISS during election season in order to give a boost to NASA’s commercial space efforts and thus Pres. Obama?

It’s back of the envelope fun time!

Many space enthusiasts propose extracting precious metals* from asteroids as way to pay for space development. Other space enthusiasts argue that water should be the target of asteroid miners. Mark Sonter has done a particularly thorough job arguing in favor of water, as opposed to precious metals. Personally, I’m agnostic. However, I did some back of the envelope calculations regarding both scenarios. Here they are:

Asteroid prospecting - Image courtesy of NASA

Water

Let’s assume we get an investor to spend $500 million on an asteroid water harvesting mission. That includes the investor’s profit and all mission costs. How much water could we get for that amount?

The competition is water launched from Earth. NASA just bought 12 Falcon 9 launches for $1.6 Billion. That’s $134 million per launch (rounded up) or approximately $2342/lb launched to Low Earth Orbit (LEO). Let’s say we sell our asteroid harvested water for $2000/lb in order to  beat the competition.

$500,000,000 total mission cost / $2000/lb of water = 250,000 lbs of water.

This is slightly less than eleven Falcon 9 launches worth of water. So now, of course, the big question is can one profitably sell asteroid-harvested water for $2000/lb? Dunno. This is just back of the envelope play time, not real research. But what about the shiny metal stuff? How might that work out?

Gold

This time around, instead of an investor, let’s pretend our super-rich uncle hands you a check for $500 million, musses up your hair, and says, “Go get me some gold in space, kiddo!” So you round up Elon Musk and Burt Rutan and a bunch of crazy wild-eyed geniuses and you cobble together a mission. A few years later you wrangle a gold-bearing asteroid in LEO. How much gold have you collected? Hope you still have some room left on the back of that envelope…

Oh good, plenty of space.

Let’s assume you’re not going to deorbit the asteroid, but rather sell it to another entity that will extract the gold in orbit (you’ll see why later**). So, instead of the market price, you sell it for $500/troy ounce to give the mining entity some room for their own costs and profit. There are 32.15 troy ounces in one kilogram. Therefore:

$500/troy ounce x 32.15 troy ounces/kg = $16,075/kg

So, how much gold do we need to mine in order to break even?

$500,000,000/$16,075 = 31,105 kg of gold to break even

Uncle Moneybags striking it rich.

Chances are only a portion of the asteroid will actually be gold. Let’s assume a very optimistic 5% concentration of gold in our asteroid. So that means to get 31,105 kg of gold to break even, the rock is 622,100 total kg. If we assume a density of 1000 kg/m3 (total guess, and it makes the math easy) for the gold-bearing asteroidal material then the asteroid is 622.1 m3. Therefore, the diameter of the asteroid is a surprisingly manageable 10.6 meters. A space rock about the size of a house could be worth $500 million, in theory at least.

A space rock about the size of a house could be worth $500 million, in theory at least.

Hmm maybe this will work. Use this handy calculator to figure out how to make Uncle Moneybags some profit once a gold-bearing asteroid is discovered in near Earth orbit.

*Wait wait wait – what about platinum?!? All those links at the beginning of the post talk about platinum, and the associated platinum group metals, as being the best target for asteroid miners. Well, the price of gold right now is $1730.75 per troy ounce. Platinum? $1652 per troy ounce. There may be compelling reasons for pursuing the less-expensive platinum but, at least for back-of-the-envelope fun time, I prefer to use the shiny metal with the higher market price.

**I am highly skeptical that $500 million is enough money to both capture the asteroid and place mining infrastructure in orbit or figure out a way to safely deorbit an asteroid 10.6 meters in diameter. Let someone else with deeper pockets figure it out.

The Dragon Flyer is cost-effective.

By 2014 various national governments will have launched six sample return missions to asteroids or comets. This marathon of sample return missions began in 1999 with the American Genesis mission which returned miniscule samples of solar wind. This cavalcade will conclude with the Japanese Hayabusa 2 mission which is proposed for launch in 2014. In between those missions are Stardust, Hayabusa, Fobos-Grunt and OSIRIS-REx. All of these missions were designed to return a total of less than 7 kilograms of asteroidal or cometary material back to Earth for analysis.

The Hayabusa Mission.

What did that 7 kilograms of material cost? In other words, what did the national governments of Japan, Russia and the United States spend on those six missions? Over $1.9 billion dollars.

The Dragon Flyer, on the other hand, will cost much less. It is proposed that the payload (i.e. the captured asteroid) be sold to a national government or space agency like NASA or the ESA. The target price for 3000 kilograms of pristine asteroidal material:   $700 million.

This is $300 million less than what NASA will pay for the OSIRIS-REx return mission which will return only 2.1 kilograms of asteroidal material.

Furthermore, it is a risk-free expenditure for whatever entity decides to purchase the asteroid. Should NASA agree to purchase the asteroid, it will not have to spend one penny “up front.” The risk of the venture will be borne by the private backers and NASA will only have to pay once the asteroid has been safely returned to Earth. Contrast this with the recent Fobos-Grunt sample return mission – the Russian government expended over $160 million on a space probe that failed to leave low Earth orbit due to a glitch. That is $160 million lost. However, should NASA agree to purchase the Dragon Flyer’s payload and should it subsequently fail, NASA will not have lost a dime (except the opportunity costs associated with the funding – a negligible penalty). Instead, the backers of the mission will have lost money, and NASA will be free to re-obligate that $700 million to other projects.

But what if the Dragon Flyer is a success? What will the mission backers gain? This will be discussed in the next post.

Click here and fill out the form to read the full report.

Quality AND quantity

Dragon Flyer will not only return asteroidal material of a higher quality than all other previous space probes, but it will also return more of it. A lot more.

Between 1999 and 2014, national governments will have commissioned six asteroid or comet sample return missions. They will have returned to Earth, in total, less than seven kilograms of material.

Dragon Flyer, on the other hand, will return up to 3000 kilograms of asteroidal material. This is more than 400 times greater than what all other asteroid and comet sample missions will return between 1999 and 2014. This is also more than seven times the amount of lunar material returned by the Apollo missions.

In the next post I will begin discussing total project costs. This will show that despite returning more material, Dragon Flyer will do so at a much lower cost than comparable missions.

Remember, you can download the entire paper here, for free.

Why capture an asteroid?

Returning an intact asteroid to Earth will provide benefits to both the space development community as well as to the greater scientific community.

Astronomers in particular attach great value to the idea of studying an intact asteroid. Asteroids are usually billions of years old and are considered time capsules that can provide details about how the solar system formed. However, all asteroid or comet samples currently available for study are less-than-ideal. Most samples are derived from asteroids that have crashed to Earth  (meteorites) and thus have been deformed and melted by their fiery path through the atmosphere. As for samples collected by robotic probes in space, they are usually miniscule in size and, as such, do not provide the full story of the asteroid being sampled. In fact, to date, less than 7 kilograms of asteroidal and cometary material has been, or is planned to be, collected in space by robotic probes.

Numerous astronomers have indicated their desire to study a large, pristine, intact asteroid. But perhaps Jeremie Vauballion, of the Paris Observatory, said it best:

“When found, such an asteroid will immediately raise the question whether or not we should go, and I’m ready to bet that many astronomers will argue that we definitely have to go!” Vaubaillon said in an email [to Space.com]. “The reason is simple: What astronomers would not want to have a full and intact (unaltered by any physical process) piece of space rock? [emphasis added] Meteorites are all altered because they go through our atmosphere. The only piece of asteroid we have comes from the Japanese Hayabusa mission (a few grams at the very most). The comet grains the Stardust mission got back from comet Wild 2 were all altered.”

Benefits to the space development community should be obvious: asteroids represent a rich source of raw materials for future space communities. They are numerous, easier to access than other raw material sources (like the Moon), and small enough to exploit with relatively little equipment. Dragon Flyer will be the first step in learning how to manipulate and capture what could be a source of raw materials for future space communities.

The full paper has significantly more information from the scientific community about their desire to study an intact asteroid.

Introducing: The Dragon Flyer

The Dragon Flyer will be the first privately-financed deep-space mission. It will capture an entire asteroid and return it to Earth, intact, for analysis. My first set of posts will describe how this can be done safely and profitably.

However, if you don’t want to wait for me to post, you can download the entire paper here, for free.