Tag Archives: LiftPort

The Big Five Characteristics

In previous posts the rationale for space settlement was discussed, as well as how the next generation of space stations can attract people in order to be successful.  This post will discuss the characteristics the next generation of space stations must have in order to advance the causes of space settlement and developing a human-centric LEO economy.

The next generation of space stations must:

  1. Be truly permanent
  2. Rotate to provide artificial gravity
  3. Support a larger population
  4. Produce
  5. Be flexible

Let’s take these one by one:

1. Be truly permanent – the next generation of space stations, or next gen, must be designed to be repaired and upgraded in space.  Components should be modular and subsystems should be able to be swapped out and upgraded as needs require.  Structural members should be composed of materials that can be repaired using in-space resources.  In short, the next gen should be thought of less as a vessel with a finite life but more like a settlement or a building that can be repaired, upgraded and changed over time.

2. Rotate to provide artificial gravity – the next gen of space stations must have gravity in order to provide a comfortable quality of life and thus persuade the average person to live in space.  While artificial gravity has been a mainstay of science fiction for decades, and is assumed to be possible using centripedal acceleration via rotating structures in space, it has never been attempted in real life.  The next gen must incorporate some level of artificial gravity in order to prove the concept so it can be refined for later, full-scale space settlements like Kalpana One.

3. Support a larger population – in keeping with the idea that the next gen of space stations are settlements, and not vessels, we ought to call the people living, visiting and working there a ‘population’ as opposed to a ‘crew.’  Furthermore, the next gen must be able to support a larger population in order to prove that a large number of people can live and thrive in space.  The challenges and opportunities of having dozens of people in space are far greater than having less than ten people in ISS.  Thus, the next generation of space stations should be designed to support a population of at least 100 people.

The next generation space station will support a crew population of at least 100 people.

4. Produce – the next gen of space stations must demonstrate, on a commercial-scale, the ability to extract useful products from raw materials obtained in space, refine those products into salable goods or services and then assemble them into other, more complex items.  For instance, extracting water from captured comets (perhaps delivered to the station by Planetary Resources) and manufacturing liquid oxygen to refuel a government mission to Mars. Or, later on, extracting silicon from lunar regolith (perhaps delivered by Liftport via a lunar space elevator) to produce solar panels to install into a satellite that is docked with the station. Whatever the method, it will be necessary to show that space manufacturing is feasible to advance the cause of space settlement.  It will be necessary to use local materials to construct full-scale space settlements because the tonnage required is too high to boost everything up from Earth. The nextgen must prove that local materials can be refined into usable goods, and it must do so at a profit in order to be sustainable.

5. Be flexible – finally, the next gen of space stations must be able to accommodate a variety of different users and uses within the same facility (as much as is feasible).  Again, in keeping with the idea that this is settlement, and not a single-use vessel, it must be able to accommodate recreation, manufacturing, military, R&D, etc. And, it must be flexible enough to be rearranged internally to accommodate as-yet-unforeseen users and needs.

Part I: The pros and cons of Rockets for delivering orbital raw materials

In a previous post I described the four new options for amassing raw materials in orbit for the purpose of space development. They are: using rockets to lift stuff up from Earth, using mass drivers on the moon to shoot regolith into orbit, capturing asteroids a la Planetary Resources, and constructing a lunar space elevator a la LiftPort to transfer lunar ore into orbit. In this post I will describe the basic advantages and disadvantages of each method.

The goal here is to determine the fastest and most cost-efficient method for collecting hundreds of tons of raw material in Earth orbit. Hundreds of tons – if not thousands – are necessary to manufacture the large structures necessary to develop space i.e. to build a self-sustainable and self-replicating civilization in orbit. Let’s talk pros and cons one by one:

I. Rockets – There are several big benefits to using rockets:

  1. Proven technology with a deep market: rockets are proven and there are lots of vendors to choose from. It’s the “devil we know” versus the other technologies which are all unproven.
  2. Direct to orbit: rockets are the only option available to boost items directly from the Earth’s surface. This, in theory, allows one to boost finished structures to orbit, skipping the raw material/manufacturing stage. This is both a blessing and a curse: while having some finished products in orbit will be useful (Bigelow modules and 3d printers immediately come to mind), especially in the early stages of space development, ultimately the goal is to build an indigenous manufacturing base in orbit, not just boost everything up from Earth. Also, rockets are the only way to get people into orbit!

However, the major drawback to using rockets is, of course, their expense. Rockets are ultimately too expensive to boost anything except the highest value cargo. This is reef that every space development has foundered on since the beginning of the space age.

Future posts will discuss mass drivers, asteroid capture and lunar space elevators.

An Expanding Menu: Rockets, Mass Drivers, Asteroid Capture and Space Elevators

Since the halcyon days of Gerard K. O’Neill and his grand visions of massive solar power satellites and palatial space colonies, space cadets the world over have pondered the best way to collect the raw materials necessary to construct such structures in orbit. Many, including myself, deferred to Mr. O’Neill’s assertion that the lunar mass driver is the best mechanism to amass a raw material base in orbit. Indeed, there is something elegant in the idea of combining thousands of tiny cargos to form one large resource pile, as opposed to the brute force concept of launching one gargantuan payload at great expense. On the one hand, space enthusiasts have the familiar image of an explosive rocket breaking the surly bonds of Earth (and occasionally failing) in order to put a complete payload into orbit. But O’Neill offered a new, more tranquil vision: rows of silent, miles-long electromagnetic catapults safely and efficiently zooming thousands of tiny payloads into orbit over many months.

Mass Drivers….

Nice day for a lunar picnic next to the serene mass driver. Courtesy of the Lunar Institute. Credit: Pat Rawlings.

….Versus Rockets.

Hot dog! Look at that mother go! Yipppee! I just wish it weren’t so risky and inefficient…

But how times have changed. Today we have two additional visions. The first involves Planetary Resources and asteroid capture. The second involves LiftPort and the lunar space elevator.

As the readers of this blog know, Planetary Resources is a well-funded and well-staffed outfit based in Seattle, WA. They hope to develop new technology and methods to eventually capture and mine near-earth asteroids. LiftPort, the space elevator company, is also based in Seattle, WA and is slightly less well-funded and well-staffed than Planetary Resources. However, I would argue that LiftPort’s ideas and vision generate just as much enthusiasm as do the ideas of Planetary Resources. Furthermore, LiftPort has already failed and resurrected itself AND has successfully crowd-sourced innovation in the past. These two factors alone (perseverance in the face of failure and the ability to manage far-flung groups of researchers) indicate that LiftPort has the potential for success*. In fact, one could argue that Planetary Resources, with its venture capital and in-house engineering staff, represents the old style (1990s) of aerospace innovation while LiftPort, with its open(er)-source development plan and bootstrapping culture represents a new way, or at least a different way, of generating innovation.  

LiftPort, after an ignominious bankruptcy in 2007, is back from the dead, having just raised almost $80,000 over $110,000 of R&D funding in less than a month on, of all places, Kickstarter.

But let’s get to brass tacks – which method is the best way to support space development: rockets, mass drivers, capturing asteroids or lunar space elevators? In future posts I will discuss how each of these options have benefits and drawbacks to amassing raw materials in orbit. UPDATE: Part 1 of 4 (Rockets) is linked above.

*Full disclosure: I used to work for LiftPort. I quit in 2004, thinking at the time that the company was doomed. In  2007, I was proven right. But now, in 2012, I’m not too sure. LiftPort is scrappy and their vision is mesmerizing. Even if they don’t build a space elevator, they might generate enough IP and interest to get bought up by Google X Labs or some other group of yuppie-genius billionaires who will then carry the LiftPort vision to fruition.