Tag Archives: Kalpana One

The Big Five Characteristics

In previous posts the rationale for space settlement was discussed, as well as how the next generation of space stations can attract people in order to be successful.  This post will discuss the characteristics the next generation of space stations must have in order to advance the causes of space settlement and developing a human-centric LEO economy.

The next generation of space stations must:

  1. Be truly permanent
  2. Rotate to provide artificial gravity
  3. Support a larger population
  4. Produce
  5. Be flexible

Let’s take these one by one:

1. Be truly permanent – the next generation of space stations, or next gen, must be designed to be repaired and upgraded in space.  Components should be modular and subsystems should be able to be swapped out and upgraded as needs require.  Structural members should be composed of materials that can be repaired using in-space resources.  In short, the next gen should be thought of less as a vessel with a finite life but more like a settlement or a building that can be repaired, upgraded and changed over time.

2. Rotate to provide artificial gravity – the next gen of space stations must have gravity in order to provide a comfortable quality of life and thus persuade the average person to live in space.  While artificial gravity has been a mainstay of science fiction for decades, and is assumed to be possible using centripedal acceleration via rotating structures in space, it has never been attempted in real life.  The next gen must incorporate some level of artificial gravity in order to prove the concept so it can be refined for later, full-scale space settlements like Kalpana One.

3. Support a larger population – in keeping with the idea that the next gen of space stations are settlements, and not vessels, we ought to call the people living, visiting and working there a ‘population’ as opposed to a ‘crew.’  Furthermore, the next gen must be able to support a larger population in order to prove that a large number of people can live and thrive in space.  The challenges and opportunities of having dozens of people in space are far greater than having less than ten people in ISS.  Thus, the next generation of space stations should be designed to support a population of at least 100 people.

The next generation space station will support a crew population of at least 100 people.

4. Produce – the next gen of space stations must demonstrate, on a commercial-scale, the ability to extract useful products from raw materials obtained in space, refine those products into salable goods or services and then assemble them into other, more complex items.  For instance, extracting water from captured comets (perhaps delivered to the station by Planetary Resources) and manufacturing liquid oxygen to refuel a government mission to Mars. Or, later on, extracting silicon from lunar regolith (perhaps delivered by Liftport via a lunar space elevator) to produce solar panels to install into a satellite that is docked with the station. Whatever the method, it will be necessary to show that space manufacturing is feasible to advance the cause of space settlement.  It will be necessary to use local materials to construct full-scale space settlements because the tonnage required is too high to boost everything up from Earth. The nextgen must prove that local materials can be refined into usable goods, and it must do so at a profit in order to be sustainable.

5. Be flexible – finally, the next gen of space stations must be able to accommodate a variety of different users and uses within the same facility (as much as is feasible).  Again, in keeping with the idea that this is settlement, and not a single-use vessel, it must be able to accommodate recreation, manufacturing, military, R&D, etc. And, it must be flexible enough to be rearranged internally to accommodate as-yet-unforeseen users and needs.

Living in space must provide a high quality of life.

The previous post in the “Bridging the Gap” series on Marottaspaceresearch.com discussed the rationale for settling space and establishing a human-centric LEO economy to support space settlement.  In that post, we learned that there is a “gap” in space development plans. We have the ISS, we will soon have the Bigelow stations, but that won’t get us to a full-scale space colony that will enable wide-spread space settlement.  We need to start thinking about what will come after the Bigelow stations in order to ‘set the stage’ for the eventual development of the big space colonies.

Bridging the gap MSR graphic

But this post will discuss a more immediate question: what would persuade the average person to move to a space station in the first place?  Space cannot be settled without people.  And space settlements will be communities of people in space. Communities are established for a reason, and our orbital settlement will be no different.  Resources are expended to establish a settlement and people move into that settlement to escape where they came from, to follow orders or, most likely, to make money and find a better life.  The last reason is the best reason and should guide us when we design our next generation of space stations.  That is, settlements founded by people who want to be there are the most successful and enduring places.  Therefore, the primary purpose of the next major outpost in space must be to demonstrate that humans can live and thrive in space – as opposed to fulfilling strictly governmental or commercial purposes.

Therefore, the primary purpose of the next major outpost in space must be to demonstrate that humans can live comfortably in space.

While it is not yet feasible to build something like Kalpana One or a Bernal Sphere, the next generation of space stations can “bridge the gap” between the ISS/Bigelow stations and these “full-scale” space settlements by demonstrating that life in space can be both financially lucrative as well as pleasantly comfortable.

In short, the next generation of space stations must offer a high quality of life in order to prove that large-scale space settlement is feasible.