Tag Archives: aerospace engineering

Tweets from Space

Check out an article from Marotta Space Research.  It will be posted shortly at Space Safety Magazine.

Tweets from the High Frontier

Space.  It’s vast.  It’s majestic.  It’s so big it defies comprehension and, occasionally, description. But, what if space were full of people?  People with smartphones?  What if there were communities teeming with people living, working and playing up there?  They’d probably have lots to say about their experiences in orbit amongst the space colonies scattered across the high frontier.

Fair reader, you’re in luck.  I have traveled to the future and obtained a representative sample of tweets from space.  What follows are some examples of what humans might say about their lives in future space settlements:

Can’t believe how big this place is @IslandThree! There are actually rain clouds in here! And I can’t see down to the other side! #impressed

island31a16d-goodvista1a
image credit: Ed Sweet

Space settlements will be big – much bigger than contemporary ‘tin-can’ space stations like ISS or Tiangong-1.  The latest space settlement design, Kalpana One, envisions a cylinder 250 meters in diameter and 325 meters long – about the size of some of the largest cruise ships today.  Kalpana One can accommodate 3,000 people living in a business park-like setting.  This is a small space settlement – some of the larger designs are miles long and can host hundreds of thousands of people along with plenty of space for forests, farms, lakes and rivers.  All of these structures can be built in space using the same kinds of proven techniques that for decades have been used to construct massive supertankers in shipyards here on Earth.  The challenge is getting the labor and raw materials to start the first community.  Perhaps we should check the help-wanted ads…

Wanted: Agile people with strong upper bodies for lucrative work. Personalized spacesuit included. Join the elite asteroid miners today! #PR-HR

 

Immediate opening: 3D printer technician, must have experience with molten metals in a hazardous environment. Good pay, great views #Spiderfab-HR

The primary reason existing space stations are so small is that they are built on Earth and launched into space on rockets.  And rockets are expensive – it costs over $4,000 to launch one kilogram into space on the cheapest rocket available today.  But future space settlements will not be built on Earth and launched into space.  In-situ raw materials – collected primarily from asteroids – will be refined and shaped into the beams, panels, and windows that will form the settlement.  Just like sailing ships carried shovels and axes to the New World (not log cabins and farm silos), rockets will be used to carry the tools that will build settlements – not the settlements themselves.

Furthermore, the human resources paradigm of space travel is going to change. Currently, thousands of support personnel on Earth work to launch a handful of people into space.  That is set to change as new launch companies field rockets that require only a handful of support staff.  Better rockets and lower labor costs mean rockets can launch more frequently which will make them both safer and cheaper. Soon, a minority of people on Earth will work to support thousands of people living, working and playing in space.  And all those people will need to eat.  Are you getting hungry? Let’s see what’s on the menu in orbit…

For all you space cadet foodies: tried the @Bernal bioreactor algae pudding – gooey, weird and sweet. #spacecuisine

 

@IslandThree’s solar-roasted tilapia is “flaky, light and delicious” says @SnootyChef. Try the local veggies too! #spacecuisine

Many people enjoy the novelty of freeze-dried, packaged ‘space food’ (remember “astronaut ice cream” when you were kid on those trips to the museum?) but few people would want to eat that for the rest of their lives.  Luckily, space settlements will have the capability to grow fresh food.  In fact, space settlements will be required to grow much of their own food because of the size of their populations and the exorbitant cost to ship food up from Earth.  The unusual space environment and unique architecture of space colonies will allow for extremely productive agriculture.  First, the sun shines all day in space allowing for major energy inputs into production. Second, irrigation, fertilization, sowing and harvesting will be tightly controlled and integrated into the architecture of the settlement.  Third, pests, weather and other Earth-bound agricultural problems will not afflict farming in space.  All of these factors will combine to supercharge food and fiber production in space settlements.

So, we’ve arrived, we’ve got a good job and we’ve got plenty of food to eat.  But what is there to do for fun in space?  Contemporary space tourism companies are betting that people will pay millions of dollars to simply look out the window at Earth and spin around in zero-gravity for a week.  While that may appeal to some, most may quickly bore of it and start looking for more.  Recreation in a space settlement will offer many more options than what current space tourism provides.  Spherical pools floating in mid-air, piloting an actual starfighter, and literally flying like a bird are just a few of the possibilities….

Exclusively @IslandThree Resort: come fly a REAL X-Wing in ACTUAL space! Shoot drones and complete the obstacle course. Earn your Rebel wings! #RogueSquadron


Dive into the water, stroke stroke stroke then I shoot out the other side! Spherical pools @Bernal resort are crazy! #nextOlympicsport ?

 

image credit: David A. Hardy
image credit: David A. Hardy

That was fun but space settlements can serve a higher purpose than merely offering sustenance or recreation.  Throughout history there are numerous instances of people with similar religious or philosophical leanings banding together to form communities where they can pursue their interests without interference.  Space settlements offer the ultimate refuge for people seeking peace and  isolation.

Want to live in harmony with like-minded individuals? Do you feel a (much) higher calling? Come join us in the first temple in orbit! #L5Mormons

In fact, a recent film made the exact same conclusion (albeit in a wholly negative light) that space settlements can act as enclaves for like-minded individuals.

Human nature being what it is, it is unlikely that space settlement will be as innocuous, high-minded and fun as depicted in the selection of tweets above.  But the purpose of space settlement should not be to create utopias in the sky.  While they can expand the resource base of Earth and provide a higher standard of living for all who occupy them, space settlements will not by themselves eliminate war, greed, stupidity or laziness.  Rather, the purpose of space settlement is to expand the stage upon which the human drama plays out.  Space settlements will be little Earths full of love, hate, sadness and joy.  While the food there may be better and the recreation might be different, space settlements, at the end of the day, will be like little Earths: familiar and cozy.

 

Announcing the “Progress” page on MSR

Check out the new “Progress” section on Marotta Space Research.  It will chronicle the progress of key innovations that are enabling space development. Feel free to make suggestions if you think something else should be on the list!

Main Street in Space: Module Specifications

This post will describe the basic specifications of a single Main Street in Space (MSIS) module.

MSIS graphic 2.28.14

  • is a linear “spine” 10.5 meters in length and 3.6 meters in width at the longest and widest points.  It is designed to fiit into the expanded fairing of a Falcon 9.
  • does not produce artificial gravity and is not designed to rotate.
  • provides an internal cargo transport system. Each MSIS module has four 1-cubic meter cargo cubes that can transport themselves (using magnetic conduction motors) within the structure so materials can be moved between service ports and between modules.
  • generates at least 20 kilowatts of baseline electrical power using one deployable solar electrical panel (not shown). Includes active thermal management systems i.e. radiators which are derived from ISS technology (not shown).
  • has six service ports: four designed for docking and berthing “tenants” or “users” and two designed to attach to other MSIS modules so the station can grow indefinitely. Each service port provides connections for all necessary utilities.
  • each MSIS module has a remote manipulator arm (not shown) that is 1/4 the scale of Canadarm 2 on ISS. It can move itself between the power data grapple fixtures (PDGF) sites shown in the image.
  • has a dry mass of less than 13,000 kilograms.
  • estimated to cost $100,000,000 to construct, and $56,000,000 to launch into low earth orbit.

MSIS rad solar deployedThe image above shows one MSIS module with solar panel (blue) and radiator panel (brown) deployed, as well as a IDS docking port on the bottom.  A second module, without its panels deployed, is linked above the first one.

Introducing MSIS: the Main Street in Space.

Marotta Space Research is working on a space station design different from previous proposals.  It is smaller in scope yet more feasible to construct in the short term.  It is inspired by the PISCES design presented by Doris Hamill in the Winter 2013 edition of Ad Astra magazine.

While some of the design parameters for this station are new, many are derived from the NGSS.  Specifically, the new design will be:

  • Located in a very stable orbit i.e. an orbit that will not degrade or require reboost for decades, if not centuries.
  • Flexible i.e. host a variety of different users from different countries, sectors and industries.
  • Infinitely expandable.
  • Composed of individual modules, each of which can fit within the mass and dimensional limitations of the Falcon 9.
  • Able to provide all basic life support components for users i.e. provide ‘utilities’ in space: power, coolant, pressurant, logistical support, communications, guidance & navigation, docking and berthing.  It will also provide for the circulation and transport of liquids and solids throughout both the interior and exterior of the station.

In short, the new design will provide a logistical support platform for any number and variety of users, both crewed and uncrewed.  Users can design modules to meet their specific needs and will not have to worry themselves about how to obtain power, coolant, guidance, etc.  The users’ modules will ‘plug’ into one of the space stations service ports in order to receive all of the necessary utilities.  If PISCES and NGSS are complete towns in space, then this new design can be considered a central artery connecting different buildings – a kind of Main Street in Space (MSIS).

A conceptual image of the proposed "Main Street In Space" space station design.
A conceptual image of the proposed “Main Street In Space” space station design.

It is understood that the teaser image above is probably low earth orbit, which contradicts one of the requirements above. But please indulge us a little – MSIS looks way cooler in LEO than way far out in GEO. However, the rest of the details are accurate. The docking port in the foreground is scaled to the NASA iLIDS design i.e. about 4 meters in diameter.  This image clearly depicts the solar electric panels (blue) and active thermal management radiator panels (brown). It also clearly shows the modular nature of the design – each module is identical with six service ports for users (the square openings: two on each end and four in the middle in a cruciform pattern).  What’s not shown here are the manipulator arms and, obviously, the tenant modules! This Main Street is waiting for the buildings!

The next post will describe the specifications of an individual module.

Ad Astra carries article about next generation space station idea

In the winter 2013 edition, Ad Astra has an article asking, “What comes after ISS?” Doris Hamill, the author, states, “[a] city in space would begin where ISS has brought us.” In short, her PISCES idea is very similar to the NGSS and the philosophical underpinnings are identical. It’s nice to know Marotta Space Research is on the right track. More to come on this after the holidays. Merry Christmas everyone!

Basic specifications of Refinery

Refinery will demonstrate that useful products can be manufactured on an industrial scale from asteroidal and lunar raw materials.  Manufacturing using ‘in-situ’ raw materials is necessary in order to expand the human-centric LEO economy and eventually construct full-fledged space settlements.  It is infeasible to launch from Earth the millions of tons necessary to build a large space settlement – this material must be obtained from sources already above Earth’s gravity well e.g. the Moon and asteroids.

To start, some basic statistics are described.  See below for a more detailed discussion.

GEOindustrial 12.11.13 v2 labels 3
Sunward-facing side of Refinery

Refinery:

  • Is 100.96 meters long along its longest axis.
  • will be located in geosynchronous orbit (GEO).
  • Will produce 5962 kilograms of water per day, based upon the assumptions described below.
  • Will produce 271 kilograms of iron per day, based upon the assumptions described below.
  • Does not generate artificial gravity.  All operations aboard Refinery occur in zero-gee.
  • Is teleoperated by controllers on Earth and in Uptown.
  • Contains 2,313 cubic meters of sealed interior industrial space. Contains 330 cubic meters of pressurized habitable space intended for short visits by human maintenance crews.
  • Is estimated to generate 531 kilowatts of baseload electric power.
  • Contains three solar ovens, each focusing 154.36 kilowatts per second of solar thermal energy into a crucible one cubic meter in size (assuming average solar irradiance of 1.366 kw per square meter per second in geosynchronous orbit).
  • Can store 300 cubic meters/300,000 kilograms of water.  Can store 4516 cubic meters of finished industrial products.  Can store up to 6283 cubic meters of raw material.
  • Is estimated to mass 320,000 kilograms.
  • Is estimated to cost $4,150,000,000 to build and $2,037,440,000 to launch (using the Falcon Heavy at $6,367/kg to GTO)

Estimated Cost and Mass of Refinery

Unit Mass (kg) per unit Cost ($millions) per unit # of units total mass (kg) total cost of materials ($millions)
“BA330″ 20000 100 8 160,000 800
“Node” 10000 100 6 60,000 600
“Solar oven” 10000 100 3 30,000 300
“Power plant” 1000 100 20 20,000 2000
“Raw material bunker” 20000 50 1 20,000 50
“3D printer assembly bay” 10000 200 1 10,000 200
“Solar panels” 10000 100 2 20,000 200
Total 320,000 4150
GEOindustrial 12.11.13 v2 labels 2
Shadow side of Refinery – 1 of 2
GEOindustrial 12.11.13 labels 1
Shadow side of Refinery – 2 of 2

However, industrial scale manufacturing has never been done in space.  Therefore planning for Refinery requires a myriad of compromises and assumptions.

Compromises
–          In order to keep things simple, only water and iron will be produced at this first facility.  The iron will be printed into structural components using 3D printers.  These structural components will be used to repair and upgrade Uptown.  The water will be transported to Uptown as well, for drinking, cooking and washing and for conversion into oxygen and hydrogen using electrolysis machines.
–          To reduce complexity and save money, Refinery will be ‘lightly’ crewed without a permanent human presence aboard: manufacturing operations will be teleoperated from Earth and Uptown.  Refinery will have a single BA330 habitat module for occasional visits from maintenance crews.
–          For ease of design and construction, much of the chassis is composed of ‘off-the-shelf’ components like BA330s, Suncatcher CSPs, ISS-like solar panels and radiators.  On the other hand, much of the station will be custom-designed and built: the solar ovens, the connecting nodes, the raw material bunker and the 3D printer assembly bay.  Additionally, all of the equipment inside will be custom-designed and -built. Solar electric panels are included for back up power since maintenance crews will not be on-call 24/7 to maintain the Suncatchers, which are expected to need a lot of upkeep.
–          Refinery will be small, located in geosynchronous orbit and will not rotate to produce artificial gravity.  Because space manufacturing is unprecedented, it is prudent to start with a smaller, simpler facility that does not include the added complexity of generating artificial gravity.  However, operating in zero-gee presents other challenges: it will require specialized, custom-built equipment inside the facility to move materials without the aid of gravity.  It is believed that rotating Refinery will introduce engineering challenges that will distract from the primary purpose of the facility: to convert in-situ raw materials into useful goods.  Additionally, it is thought that expanding Refinery to a size that will justify the expense and complexity of artificial gravity will leave it too large and with too much excess capacity.  It is unclear today how much raw material can be delivered to the station within a given period of time.  Furthermore, simply incorporating Refinery back into the rotating structure of Uptown will force Uptown to move from its prime location in LEO up to GEO, far from the customers and markets of Earth.  Finally, there may be value in and of itself to exploring and perfecting zero-gee manufacturing.  In short, Refinery’s size, location and lack of gravity represent a series of trade-offs, all of which result in a facility that will best fulfill the goal of perfecting industrial scale space manufacturing using in-situ resources.

Assumptions
–          As mentioned above, Refinery will be located in geosynchronous orbit, separate from Uptown (which is located in low earth orbit).  In addition to the reason mentioned above, Refinery must be in GEO for its solar ovens to perform more efficiently in the constant sunlight of GEO vs. the intermittent sunlight of LEO.
–         Refinery assumes a raw material mix high in ice, nickel, iron and aluminum (e.g. dead comets and near earth asteroids) will be commercially available.  By the time Refinery is built, it will hopefully be possible to ‘order’ and have delivered to geosynchronous orbit intact asteroids up to 20 meters in diameter.  Planetary Resources and NASA are already working on the technology to do something like this.
–           Additional assumptions used to calculate the performance of Refinery:

Launch cost per kg to Uptown $2542 *
Cost of raw material per kg delivered to Uptown $2000
% of 1 kg of raw material that is water (ice) 20%
% of 1 kg raw material that is iron 10%
density of raw material 2710 kg/m3 **
number of hours operating per day 22
percent of raw material lost to inefficiencies 10%
*using Falcon Heavy
**http://en.wikipedia.org/wiki/Standard_asteroid_physical_characteristics#Density

At this point it is important to remember that the entire Bridging the Gap series of posts is a thought experiment – a speculative exercise intended to get one thinking about how to bridge the gap between the current generation of space stations and full fledged space settlements.  Refinery is not intended to be a final design. A large number of assumptions are inherent in any thought exercise.  That being said, the assumptions made here are grounded in the best available facts and are reasonably conservative, considering the knowledge available to the author at the time of writing. Your constructive feedback is welcomed.

Refinery is being…refined

Working hard on the specs for Refinery and making some interesting discoveries. Happily, the design will be simplified and certain manufacturing processes – namely liquid oxygen and liquid hydrogen production – will be moved to Uptown.  Here is a sneak preview of Refinery 2.0:

GEOindustrial 12.11.13 v2 liteLarger solar ovens, more power production, smaller volume. Stay tuned.

Basic specifications for Uptown

The following post describes the basic specifications of the “Uptown” component of the next generation of space stations.

12.1.13 Final Version NGSSUptown:

  • is a ring 148 meters in diameter and 47.8 meters in depth (from “zero-gee viewing window” to tip of rear-most radiator panel).
  • rotates at two revolutions per minute, generating one-third Earth gravity and 15.5 meters/sec (approximately 34mph) angular velocity along the rim.
  • has a total internal pressurized volume of 18,360 cubic meters.
  • generates 2.2 megawatts of baseline electrical power.
  • can accomodate 100 people in 11 residence quarters:
    • 4 “tourist” quarters with a capacity for 4 tourists each, for a total of 16 people.
    • 7 “non-tourist” quarters with a capacity of 12 non-tourists each, for a total of 84 people.
  • provides 4,290 cubic meters of pressurized volume available for private non-residential use and 10,440 cubic meters of shared non-residential pressurized volume.
  • provides 1,200 cubic meters of shared zero-gee pressurized volume, including a 25 meter wide viewing window at the center of the station.
  • has a ‘dry’ or ‘vacant’ mass of 2,548,000 kilograms. ‘Vacant mass’ is the mass of the station not counting internal furnishings and non life-support related equipment and materials.
  • is estimated to cost $60,000,000,000 to build, not including launch costs.
  • will cost $6,489,756,000 to launch to low earth orbit, assuming a launch cost of $2,547 per kilogram – the proposed cost-per-kilogram to orbit for the Falcon Heavy.
  • will require at least 620,500 kilograms of water per year for life support purposes. Assuming 90% recycling (ISS currently recycles 93%), 62,050 kg of water per year required for life support.

Final Color Version NGSS

  • is composed of:
    • 28 BA330-like modules (green), each 9.5 meters in length and 6.7 meters in diameter and each with an internal pressurized volume of 330 cubic meters. Each masses 20,000 kilograms and is estimated to cost $100 million.
    • 24 custom-made ‘corridor’ modules (pink), each 19.3179 meters in length on the exterior side and 5 meters in width on the rimward side, each with a ‘foyer’ 6.7 meters long and 2 meters in width on the rimward side. Internal                 pressurized volume for each corridor is 330 cubic meters. Each masses 30,000 kilograms and is estimated to cost $200 million.

Final Color Version Shadowside NGSS

    • 24 ‘spine’ trusses (blue), each 18.9274 meters in length on the rimward facing side. Unpressurized but very high strength. ‘Corridor’ segments are connected to this spine, as well as the support trusses for the power plants and radiators. It is designed to transmit rotational forces while the station is under construction or being upgraded. Each masses 10,000 kilograms and is estimated to cost $100 million.
    • 88 Suncatcher-like concentrating solar power plants (yellow) each occupying a volume 6.9401 meters in diameter and 5 meters in depth. The Suncatchers will be parabolic, unlike the cylindrical shape shown in the graphic (cylinders are easier to sketch).  Each Suncatcher will generate 25 KW baseline power for a total of 2,200 KW produced while the station is facing the Sun.  This energy will charge batteries distributed throughout the corridor and BA330s modules for use when the station is transiting the nightside of the Earth. Each Suncatcher masses 1,000 kilograms and is estimated to cost $100 million.
    • 90 radiators (brown), each 125 square meters in size, each able to dissipate 149 KW of energy for a total dissipation capacity of 13,140 KW. Each masses 10,000 kilograms and is estimated to cost $100 million.
Unit Mass (kg) per unit Cost ($millions) per unit # of units total mass (kg) total cost of materials ($millions)
“BA330” 20,000 100 28 560,000 2800
“Corridor” 30,000 200 24 720,000 4800
“Spine truss” 10,000 100 24 240,000 2400
“Power plant” 1,000 100 88 88,000 8800
“Radiator” 10,000 100 90 900,000 9000
“Zero gee” 40,000 200 1 40,000 200
Total 2,548,000 28000
Note: All figures are estimates. Materials cost is more than doubled to $60B to account for R&D and operations costs.

Get the model on Sketchup and check it out for yourself.  Specs on Refinery are coming soon!

The Next Generation of Space Stations: A Conceptual Design

As described in previous posts, Marotta Space Research has created a conceptual design for the next generation of space stations.  This conceptual design achieves the strategic goals necessary to bridge the gap between the current crop of space stations and what is needed to build full-fledged space settlements.

The Answer Is...Additional considerations were made when crafting this design:

  • Existing technologies were used to the greatest extent possible.  In fact, the station is essentially a larger and unique configuration of existing technology that will be commercially available in the next ten years (e.g. BA330 modules) or is currently available but needs to be reverse engineered for use in orbit (e.g. Suncatcher CSP power plants).
  • The station is actually two stations:
    • a smaller teleoperated station in geosynchronous orbit that converts in-situ raw materials into water, oxygen, hydrogen, and iron structural components.  This part of the station is tentatively called “Refinery.”
    • a much larger station in low to medium earth orbit hosting the inhabited portions tentatively called “Uptown.”

Refinery requires the constant sunlight of geosynchronous orbit in order to most efficiently convert in-situ materials into finished products.  However, Uptown must be located in a lower orbit close to the customer base and markets of Earth in order to maximize its economic output.  Therefore, separating Refinery from Uptown in different orbits achieves the strategic goals of maximizing both economic output and manufacturing productivity.

NGSS answer graphic

A final note: this is a concept.  This is not a final design.  Much of the work here is speculative and represents an extremely ambitious proposal.  In fact, the entire purpose of this series of blog posts is not to create a final space station design.  Clearly an engineering project of the scale proposed here cannot be completed with only a few paragraphs and some rudimentary graphics.  Rather, the purpose of this blog is to spur discussion and advance the cause of space settlement.  It is hoped that these plans will get people thinking about what comes after the Bigelow stations and how we can move humanity closer to full-fledged space settlements. With that in mind, your constructive comments are welcomed.

This is a concept, not a final design. It is intended to spur discussion and further the development of more advanced space stations.

Taking a break, considering a mini CELSS ‘experiment’

I just read the Orbital Space Settlement Tasks page on Al Globus’ website. Very interesting reading. I think I might try this mini Closed Ecological Life Support System ‘experiment’:

Do research into closed ecological life support systems by placing small amounts of soil, plants, and microbes in sealed jars. See how long they can survive with just sunlight coming in.

Ok so a quick google search of “closed jar terrariums” shows that this is actually pretty common. This person has a pretty cool site on how to make them using moss. Looks likeactivated carbon is an essential ingredient – possibly to filter out contaminants?

Closed jar moss terrariums. Credit: http://www.instructables.com/file/FKB3U7HHH2VNBLP
Closed jar moss terrariums. Credit: http://www.instructables.com/file/FKB3U7HHH2VNBLP

How nice would it be to be able to walk barefoot over soft moss and pick little flowers growing in greenhouses in the next generation of space stations?

 

Sneak Preview!

As alluded to in earlier posts, Marotta Space Research is working on a conceptual design for the next generation of space stations. Here is what we have so far:

Sneak preview of a conceptual design for the next generation of space stations.
Sneak preview of a conceptual design for the next generation of space stations.

More to come soon!

The solution to keeping the lights on in space.

The previous post described how difficult it will be to power the next generation of space stations exclusively with solar electric panels.  Other options were investigated including nuclear power, hydrogen fuel cells (like those used on the Space Shuttles), electrodynamic tethers and, finally, concentrating solar power or ‘CSP.’

In short, a space station proposal being drawn up right now will use 88 concentrating solar power plants of a type similar to the Suncatcher CSP designed by Stirling Energy Systems in the last decade.

Stirling-Energy-Suncatcher-e1285022946537Each of these power plants will generate 25kW for a total of 2,200 kW.  Each  power plant will weigh around 200 kilograms, not counting the reflective mirrors and support structure.  While the power plants will be launched up from Earth, the reflective mirrors and support structure will manufactured in space from in-situ resources.  This is because they will be made of iron and/or aluminum, contain no moving parts and thus should be relatively simple to make on orbit.

This technology is an ideal solution.  While it will require research to perfect (unlike solar electric panels), and probably lots of maintenance once installed, it offers high power output while having relatively low mass, low volume and low complexity.  While not as powerful as nuclear energy, it is not nearly as controversial and thus easier to get approval to launch into orbit.  It is tailor-made for the next generation of space stations.

How to keep the lights on?

We here at Marotta Space Research are working on a design for the next generation space station for the Bridging the Gap series.  A problem cropped up regarding power generation i.e. it will take an unreasonable amount of solar panels to generate sufficient electricity for our station. As such, we’re not sure how to keep the lights on!  Read on for an explanation…

The International Space Station generates approximately 18.3 kW per person aboard the craft using 3,072 square meters of solar panels.  As it is the latest, most advanced real-world example, we will use that as our baseline when designing our power generation system.  That is, we will design a power system for our station that generates at least 18.3 kW per person.

Thus, a space station designed to accommodate 100 people must generate at least 1,830 KW.  Ideally a buffer of 20% should be included to account for emergencies and ‘unknowns’ so our system must generate at least 2,196 KW.  To generate this amount of power using only solar electric panels of the type used on the ISS will require an astounding 54,404 square meters (or almost 14 acres!) of panel.  The logistics and cost of launching, installing and managing such a large solar panel array exceed the benefits that such an array will provide to the station.

Powering our station exclusively with solar electric energy will require up to 14 acres of solar panels.  This is infeasible.

One should be hesitant to assume great increases in efficiency (leading to higher power output with fewer solar panels) because the panels used on this new station will need to be repaired using in-situ (e.g. asteroidal or lunar) resources and methods.  Thus, they may not be as efficient as the best Earth-made panels. They may not be as efficient as the older ISS panels!

So, the problem is clear: how to power a large station with dozens or even hundreds of people?  Luckily, other power options are available.  A solution involving a combination of solar electric, hydrogen fuel cells and nuclear energy is being examined right now. Stay tuned.

‘Towns in space’ must provide economic value in order to grow.

The previous post introduced the idea that the next generation of space stations should be thought of not as ships or craft but more like settlements or small towns in space.  Towns have to fulfill an economic need in order to survive and ultimately grow and be successful.  Our new ‘towns in space’ are no different.

Our ‘towns in space‘ must provide economic benefits in order to be successful,  just like any town on Earth.

Here are ten different goods and services that the next generation of space stations could provide:

  1. A superior space tourism destination.
  2. Satellite servicing, fueling, assembly, and construction.
  3. Superior research and development facilities.
  4. Hosting military installations*
  5. Storing, processing of toxic waste* or other items unsuitable for the biosphere.
  6. Hosting detention facilities*
  7. Extracting precious metals from asteroidal materials.
  8. A super-exclusive retirement home/luxury condominium.
  9. Unique physical therapy/rehabilitation facilities.
  10. Manufacturing as-yet-unknown goods e.g. pharmaceuticals.

*These items may violate our new cardinal rule that life on a space station be pleasant and comfortable for the residents.  On the other hand, they could be extremely lucrative.

This list is by no means exhaustive. There is no shortage of ideas as to how a next generation space station can provide economic value to its citizens and thus be sustainable over the long term.  Ideally, the ideas presented above (and in the associated links) will ALL be present in LEO in multiple stations.  They will create their own niches and specialties thereby ‘fleshing out’ the human-centric LEO economy.

The Big Five Characteristics

In previous posts the rationale for space settlement was discussed, as well as how the next generation of space stations can attract people in order to be successful.  This post will discuss the characteristics the next generation of space stations must have in order to advance the causes of space settlement and developing a human-centric LEO economy.

The next generation of space stations must:

  1. Be truly permanent
  2. Rotate to provide artificial gravity
  3. Support a larger population
  4. Produce
  5. Be flexible

Let’s take these one by one:

1. Be truly permanent – the next generation of space stations, or next gen, must be designed to be repaired and upgraded in space.  Components should be modular and subsystems should be able to be swapped out and upgraded as needs require.  Structural members should be composed of materials that can be repaired using in-space resources.  In short, the next gen should be thought of less as a vessel with a finite life but more like a settlement or a building that can be repaired, upgraded and changed over time.

2. Rotate to provide artificial gravity – the next gen of space stations must have gravity in order to provide a comfortable quality of life and thus persuade the average person to live in space.  While artificial gravity has been a mainstay of science fiction for decades, and is assumed to be possible using centripedal acceleration via rotating structures in space, it has never been attempted in real life.  The next gen must incorporate some level of artificial gravity in order to prove the concept so it can be refined for later, full-scale space settlements like Kalpana One.

3. Support a larger population – in keeping with the idea that the next gen of space stations are settlements, and not vessels, we ought to call the people living, visiting and working there a ‘population’ as opposed to a ‘crew.’  Furthermore, the next gen must be able to support a larger population in order to prove that a large number of people can live and thrive in space.  The challenges and opportunities of having dozens of people in space are far greater than having less than ten people in ISS.  Thus, the next generation of space stations should be designed to support a population of at least 100 people.

The next generation space station will support a crew population of at least 100 people.

4. Produce – the next gen of space stations must demonstrate, on a commercial-scale, the ability to extract useful products from raw materials obtained in space, refine those products into salable goods or services and then assemble them into other, more complex items.  For instance, extracting water from captured comets (perhaps delivered to the station by Planetary Resources) and manufacturing liquid oxygen to refuel a government mission to Mars. Or, later on, extracting silicon from lunar regolith (perhaps delivered by Liftport via a lunar space elevator) to produce solar panels to install into a satellite that is docked with the station. Whatever the method, it will be necessary to show that space manufacturing is feasible to advance the cause of space settlement.  It will be necessary to use local materials to construct full-scale space settlements because the tonnage required is too high to boost everything up from Earth. The nextgen must prove that local materials can be refined into usable goods, and it must do so at a profit in order to be sustainable.

5. Be flexible – finally, the next gen of space stations must be able to accommodate a variety of different users and uses within the same facility (as much as is feasible).  Again, in keeping with the idea that this is settlement, and not a single-use vessel, it must be able to accommodate recreation, manufacturing, military, R&D, etc. And, it must be flexible enough to be rearranged internally to accommodate as-yet-unforeseen users and needs.

Why settle space?

The “Bridging the Gap” section of marottaspaceresearch.com will explore how to develop the first truly permanent space station. Currently, humanity has an outpost in space in the form of the International Space Station (ISS). The ISS will eventually be decommissioned and deorbited. The outpost most likely to follow the ISS will be based on the Bigelow stations and, to a lesser extent, the tiny Chinese space station. All of these follow-on stations are designed to eventually be decommissioned, just like the ISS. It is time for humanity to start thinking about a truly permanent space settlement, starting with a new generation of space stations.

But why build a new generation of space stations? Why pursue space settlement at all? While the rationale for space settlement is well-established amongst those in the space advocacy community, the majority of people are, at best, confused or ambivalent about why human beings should have a robust presence in space. After all, life on Earth is slowly improving and where it’s not, significant resources are still needed. If Earth-bound civilization is on the right track and more help is needed to accelerate current progress, why divert resources and try something new by extending human civilization into space?

There are several arguments in favor of space settlement, or, more specifically, why we should establish a human-centric economy in low-earth-orbit.:

a human-centric economy in low-earth-orbit (LEO) is a space-based network of settlements, outposts and manufacturing centers that provides goods and services produced in LEO by humans, and machines tended by humans based in LEO, to populations and consumers based on Earth, LEO and beyond.

A human-centric economy in low earth orbit:

  • is necessary to support Beyond Earth Orbit (BEO) exploration and settlement initiatives. A myriad of organizations all have ambitious plans to return to the Moon, colonize Mars, and explore the asteroids. There is even talk of organizing manned missions to explore the moons of Jupiter and Saturn. All of these missions will be challenging. Imagine how much easier they will be with a robust base of operations in low Earth orbit? Rather than having to haul fuel from Earth, these missions can purchase fuel and spare parts from private-sector manufacturing centers in LEO. Should something go wrong, they can escape to medical and trauma centers in LEO, rather than having to brave a fiery reentry in a damaged condition. Settlements based in the human-centric LEO economy will be a congregation point for explorers, colonizers and manufacturers and accelerate the exchange of information between these groups. Imagine how much simpler and easier it may have been for James Cook if a fully-stocked medical and supply center existed in Hawaii in 1730, or for Lewis and Clark if they had a full-fledged general store in the Pacific Northwest in 1800? Imagine how much more they may have learned? A human-centric LEO economy will significantly lower the cost, time and risk of BEO exploration, as well as greatly increase the knowledge gained from these efforts.
  • will produce goods and services that will improve life on Earth. Ubiquitous and more powerful satellite communications, higher-resolution imaging to prevent crime and improve the environment, exotic tourism, uber-luxurious space condo living, zero-gee physical therapy suites, advanced pharmaceuticals, space solar power, cheap raw materials, precious minerals required for high-tech products like electric cars, advanced manufacturing techniques – all of this and more can be provided by the human-centric LEO economy to improve life on Earth.
  • will expand the sphere of human civilization and provide the ideal location to preserve and expand the natural rights of humankind. The isolation and distances in space will allow settlements to experiment with new forms of social organizations. The human centric LEO economy will begin the process of moving human civilization into orbit and beyond.
  • will provide a ‘lifeboat’ should something go wrong on Earth. The proliferation of advanced technology and extremist terrorist groups is increasing the chances for a catastrophic event resulting in millions of deaths. Bioengineered viruses, nuclear weapons and, soon, weapons based on nanotechnology are just some of the risks. Settlements in orbit will provide a “lifeboat” or an “ark” for humanity in a locale separated from the biosphere and potential hazards of Earth. They will also help humanity prepare for and perhaps mitigate against natural disasters like asteroids and climate change.

This is a general overview of why humanity should settle space. But before we can settle space, and before a human-centric LEO economy is established, we must first consider what comes after the ISS and the Bigelow stations. The next post will discuss how we should design the next generation of space stations to further the development of the human-centric LEO economy and the overall goal of space settlement.

Part 3 of 4: The pros & cons of Capturing an Asteroid to deliver raw materials to orbit

The first two posts in this series have focused on the pros and cons of using rockets and mass drivers to collect raw materials in orbit. This post will discuss the merits of capturing an asteroid using what I’m calling the Planetary Resources (PR) method. As far as I can tell, PR will capture whole asteroids (small ones) and somehow drag them back to more convenient orbits closer to Earth for processing (as opposed to strip-mining them or processing the ore on-site).

How PR will (probably) capture asteroids. Credit: Planetary Resources

Let’s start with the advantages:

  • Easier transportation to destination – The more accurate way to state this is that it takes less of a change in velocity (delta-v) to move asteroids around the Earth-Moon system than it does to haul materials up from the Moon or Earth. This is because asteroids are already at the top of the cislunar gravity well. In other words, one should expend less fuel moving a typical asteroid from its orbit into, say, geosynchronous orbit, than one would on moving an equivalent mass from the lunar surface to geosynchronous orbit.

This is a HUGE advantage. Perhaps an Earth-bound analogy will drive home the point. Consider two mines on Earth. In one, the ore is laying on the surface and just has to be picked up and trucked to the processing facility. This is the PR method – snagging an asteroid and sliding it to where it needs to go. Now, consider another mine where the ore is buried deep underground. First one digs up the ore and hauls it to the surface and then it has to be trucked to the processing facility. Obviously it’s a lot more work to move all that heavy stuff around but this is what happens when ore is collected from the Earth or the Moon and then transported into orbit. By eliminating the need to haul the material up out of a gravity well, Planetary Resources has a great advantage over the other methods.

  • Provides massive infusions of raw material – Thousands of tons of material will be delivered immediately upon the arrival of a near-earth asteroid at the destination. No other technology known today has the capacity to deliver thousands of tons in one delivery. Rockets can, at most, deliver tens of tons of material. Space elevators and mass drivers provide a continuous trickle of material that, over time, can add up to thousands (even millions) of tons –but it requires patience.  If you need a lot of space rocks and you need them right away, asteroid capture may be the way to go.
  • Provides goodies – Asteroids could more easily provide resources that are not known to exist in great quantities on the Moon and are difficult to haul up from Earth e.g. rare platinum group metals, volatiles or even hydrocarbons.

But what about those disadvantages:

  • Lots of unknowns – No one has ever captured, or barely even landed on an asteroid. Pristine asteroidal material has never been examined on Earth. The composition of different classes of asteroids is essentially unknown and manipulating asteroids is, at this point, a best guess. Can a rubble pile asteroid be de-spun without it falling apart? Can a volatile-rich asteroid be “bagged” without all the water and oxygen boiling off and popping the containment unit? Mastering the capture and processing of asteroids will take many years, as well as the coordination of the swarms of robots it will take to accomplish these tasks. It may be decades before these techniques are commercially viable, especially when compared to the more familiar technologies required to exploit lunar resources.

“A mine is just a hole in the ground owned by a liar”

– Mark Twain

  • Long delays between deliveries – While a mass driver or space elevator provides a steady continuous trickle of material to orbit, asteroid capture provides huge shipments once every two or three years. This time lag will  complicate processing as facilities will have to be designed to store or digest a huge amount of material when the asteroid arrives but will then lay fallow while they wait for the next shipment. It could lead to inefficiencies.
  • Potential public relations problem – I’m not going to spill too much e-ink on this topic but it is possible that the same Luddites who oppose nuclear-powered space probes could oppose and potentially derail or delay asteroid mining because they fear “killer space rocks” being positioned closer to the Earth. Even though putting them into a more convenient orbit makes it easier for them to be deflected and diverted should something go wrong.

So, lots of pros and cons for this item. Stay tuned for the final installment regarding lunar space elevators.

 

Part 2 of 4: The pros & cons of using Mass Drivers to deliver raw materials to orbit

In a previous post I described the pros and cons of using rockets to deliver raw materials to orbit. And, in the post before that, I explained that this part of a series of posts discussing the best ways to amass raw materials in orbit needed for space development. In this post, I will discuss the pros and cons of using mass drivers to accumulate a resource base in Earth orbit.

The biggest advantage to using mass drivers is that they are very efficient. That is, once they are set up and functioning well, no fuel is required to launch payloads into orbit. In theory, the mass driver can launch hundreds of times its own weight using only electricity.

Furthermore, extensive research has been completed on mass drivers, and their earthbound cousin, the railgun. The Space Studies Institute and Gerard K. O’Neill himself built a small mass driver in the 1970s basically proving that this idea will work. And today, the US Navy is working on an electromagnetic railgun to fire artillery shells which is basically a mass driver.

Gerard K. O’Neill and his team with a working mass driver prototype in the 1970s. Courtesy: SSI

In practice, however, one cannot be sure that a mass driver will function as promised. It is, after all, a machine and machines require maintenance and upkeep. I am skeptical that mass drivers can function anywhere near their peak performance without a human presence on the moon to maintain them.

Which brings us to the biggest disadvantage to using mass drivers: they require a massive upfront investment in infrastructure. This infrastructure includes not only the kilometer-scale mass drivers but also megawatt-scale power systems (probably nuclear due to the long lunar nights – which means additional headaches), loading machinery, canister processing machinery and all the subsystems needed to make this structure work. Essentially, one must build a minor lunar base in order to construct, and possibly operate, a mass driver on the moon*.

So, bottom line, mass drivers are extremely efficient, but require a massive upfront investment in order to work.

*The fact that a mass driver may require a lunar base could be construed as either a positive or a negative, depending on one’s point of view. Positive because, hey, who doesn’t like moon bases, right? Negative because moon bases are expensive and, in this case, would simply be an overhead cost as we establish our raw material delivery system.

Part I: The pros and cons of Rockets for delivering orbital raw materials

In a previous post I described the four new options for amassing raw materials in orbit for the purpose of space development. They are: using rockets to lift stuff up from Earth, using mass drivers on the moon to shoot regolith into orbit, capturing asteroids a la Planetary Resources, and constructing a lunar space elevator a la LiftPort to transfer lunar ore into orbit. In this post I will describe the basic advantages and disadvantages of each method.

The goal here is to determine the fastest and most cost-efficient method for collecting hundreds of tons of raw material in Earth orbit. Hundreds of tons – if not thousands – are necessary to manufacture the large structures necessary to develop space i.e. to build a self-sustainable and self-replicating civilization in orbit. Let’s talk pros and cons one by one:

I. Rockets – There are several big benefits to using rockets:

  1. Proven technology with a deep market: rockets are proven and there are lots of vendors to choose from. It’s the “devil we know” versus the other technologies which are all unproven.
  2. Direct to orbit: rockets are the only option available to boost items directly from the Earth’s surface. This, in theory, allows one to boost finished structures to orbit, skipping the raw material/manufacturing stage. This is both a blessing and a curse: while having some finished products in orbit will be useful (Bigelow modules and 3d printers immediately come to mind), especially in the early stages of space development, ultimately the goal is to build an indigenous manufacturing base in orbit, not just boost everything up from Earth. Also, rockets are the only way to get people into orbit!

However, the major drawback to using rockets is, of course, their expense. Rockets are ultimately too expensive to boost anything except the highest value cargo. This is reef that every space development has foundered on since the beginning of the space age.

Future posts will discuss mass drivers, asteroid capture and lunar space elevators.

An Expanding Menu: Rockets, Mass Drivers, Asteroid Capture and Space Elevators

Since the halcyon days of Gerard K. O’Neill and his grand visions of massive solar power satellites and palatial space colonies, space cadets the world over have pondered the best way to collect the raw materials necessary to construct such structures in orbit. Many, including myself, deferred to Mr. O’Neill’s assertion that the lunar mass driver is the best mechanism to amass a raw material base in orbit. Indeed, there is something elegant in the idea of combining thousands of tiny cargos to form one large resource pile, as opposed to the brute force concept of launching one gargantuan payload at great expense. On the one hand, space enthusiasts have the familiar image of an explosive rocket breaking the surly bonds of Earth (and occasionally failing) in order to put a complete payload into orbit. But O’Neill offered a new, more tranquil vision: rows of silent, miles-long electromagnetic catapults safely and efficiently zooming thousands of tiny payloads into orbit over many months.

Mass Drivers….

Nice day for a lunar picnic next to the serene mass driver. Courtesy of the Lunar Institute. Credit: Pat Rawlings.

….Versus Rockets.

Hot dog! Look at that mother go! Yipppee! I just wish it weren’t so risky and inefficient…

But how times have changed. Today we have two additional visions. The first involves Planetary Resources and asteroid capture. The second involves LiftPort and the lunar space elevator.

As the readers of this blog know, Planetary Resources is a well-funded and well-staffed outfit based in Seattle, WA. They hope to develop new technology and methods to eventually capture and mine near-earth asteroids. LiftPort, the space elevator company, is also based in Seattle, WA and is slightly less well-funded and well-staffed than Planetary Resources. However, I would argue that LiftPort’s ideas and vision generate just as much enthusiasm as do the ideas of Planetary Resources. Furthermore, LiftPort has already failed and resurrected itself AND has successfully crowd-sourced innovation in the past. These two factors alone (perseverance in the face of failure and the ability to manage far-flung groups of researchers) indicate that LiftPort has the potential for success*. In fact, one could argue that Planetary Resources, with its venture capital and in-house engineering staff, represents the old style (1990s) of aerospace innovation while LiftPort, with its open(er)-source development plan and bootstrapping culture represents a new way, or at least a different way, of generating innovation.  

LiftPort, after an ignominious bankruptcy in 2007, is back from the dead, having just raised almost $80,000 over $110,000 of R&D funding in less than a month on, of all places, Kickstarter.

But let’s get to brass tacks – which method is the best way to support space development: rockets, mass drivers, capturing asteroids or lunar space elevators? In future posts I will discuss how each of these options have benefits and drawbacks to amassing raw materials in orbit. UPDATE: Part 1 of 4 (Rockets) is linked above.

*Full disclosure: I used to work for LiftPort. I quit in 2004, thinking at the time that the company was doomed. In  2007, I was proven right. But now, in 2012, I’m not too sure. LiftPort is scrappy and their vision is mesmerizing. Even if they don’t build a space elevator, they might generate enough IP and interest to get bought up by Google X Labs or some other group of yuppie-genius billionaires who will then carry the LiftPort vision to fruition.

G-Lab needs a space station and a launcher. Are you thinking what I’m thinking?

I’m starting to think humanity is on the brink of a full-fledged space renaissance, and this time for real. The good news just keeps on coming, this time from the venerable Space Studies Institute. Yes, that SSI. The one founded by Gerard K. O’Neill, the godfather of space cadets everywhere. The guy who invented the space colony. The one that used to be headquartered in Princeton, NJ (of all places) and spent the last twenty years being irrelevant until it got a new lease of life with its new President Gary Hudson. Yes, that Space Studies Institute.

Yes, that SSI.

SSI has got its mojo back and recently announced that it’s going to – basically – build a space station using private donations:

In order to investigate the long-term effects of partial gravity on humans and other vertebrates, the Space Studies Institute proposes the private development of a co-orbital free-flyer laboratory, in trail ~10 km aft of and station-keeping with the International Space Station (ISS)….

Our SSI approach calls for these initial three phases to be funded exclusively by private contributions or sponsorships.

Talk about ballsy! I didn’t find any concrete numbers but something like this will probably cost at least $200 million. Think about it: design, development and construction of a small space station and then a “heavy launch” vehicle to get it all into orbit. The launch alone will cost ~$100 million using the lowest-cost launcher (almost) available: the Falcon 9 Heavy.

But will SSI accept donations in kind? Hmm let’s see. I know (of) a guy who is selling space stations. And I know (of) a guy who is selling rockets. If the justification to ask for hundreds of millions of dollars in donations is that the donor wants to remembered forever, why not go straight to the biggest space geeks out there who, by the way, have exactly what you need anyway?

In short, if they’re being ballsy, SSI should just ask Robert Bigelow of Bigelow Aerospace to donate a BA-330 module to this effort and ask Elon Musk to donate a Falcon 9 Heavy launch to put the G-Lab in orbit. You can call it the Bigelow-Musk Orbital Research Facility or something like that. Bottom line, it gets the job done. And, as my dad always said, there’s no harm in asking!

Robert Bigelow + Elon Musk = G-Lab?
Could SSI's G-Lab be a donated Bigelow BA-330 module launched on a donated Falcon 9 Heavy? Why not?

A Swiss Army knife for tiny asteroid retrieval: CleanSpace One

Leave it to the Swiss to design a clever way to retrieve tiny asteroids. CleanSpace One is being built to clean up space junk and will use biologically-inspired technology that could be transferred to the Dragon Flyer. Read a description of how it will work below:

After its launch, the cleanup satellite will have to adjust its trajectory in order to match its target’s orbital plane. To do this, it could use a new kind of ultra-compact motor designed for space applications that is being developed in EPFL laboratories. When it gets within range of its target, which will be traveling at 28,000 km/h at an altitude of 630-750 km, CleanSpace One will grab and stabilize it – a mission that’s extremely dicey at these high speeds, particularly if the satellite is rotating. To accomplish the task, scientists are planning to develop a gripping mechanism inspired from a plant or animal example. Finally, once it’s coupled with the satellite, CleanSpace One will “de-orbit” the unwanted satellite by heading back into the Earth’s atmosphere, where the two satellites will burn upon re-entry.

 

Call me crazy, but that sounds pretty much like what the Dragon Flyer will do: approach and capture a small, tumbling object in deep space. We here at Marotta Space Research will be watching the development of CleanSpace One closely and cheering on their progress.

CleanSpace One will test technology that could be used by the Dragon Flyer. Credit: EPFL.

Big news: Boeing “all-electric” satellites

File this under “news nerds need to know:” Boeing’s new 702SP satellite will use on-board electric ion engines to travel from geosynchronous transfer orbit (GTO) to it’s final location in geosynchronous orbit. In the past satellites have typically used a separate booster for final orbital insertion. Electric engines have long been used for station-keeping, but this is the first time they will be used for major orbital maneuvers on a commercial satellite.

This is both good and bad news. It’s good for obvious reasons: commercial industry is becoming more confident with electric engine technology and is attempting to incorporate it into nongovernmental (i.e. more risky) payloads. I hope to see greater use of this technology moving forward.

This is bad news, however, because it could signal the end of what was a promising business opportunity in space: interorbital space transfer shuttles or “tugs.”

A proposed space tug providing support to the Hubble Space Telescope - an obsolete idea?

For decades scientists and engineers have proposed space tugs as a way to reduce launch costs to geosynchronous orbit and, more recently, as a way to make money. Now that Boeing has figured out a way to incorporate the ‘tug technology’ directly into the satellite, the space tug line-of-business may be closing, or at least drastically reduced. As capitalists we must applaud greater efficiency in the space economy, but as space enthusiasts we feel a bit disappointed that now there is one less (obvious) opportunity for entrepreneurship in orbit. However, in time, this technological development may lead to something better that no one has thought of yet. Progress marches on!

 

The Dragon Flyer is a good investment.

By now, regular readers of this blog know that the Dragon Flyer will be the first privately-financed deep space mission. It will return an intact, pristine asteroid to Earth. Not only is this something that the scientific community wants, but Dragon Flyer will do it better than previous missions, and at a lower cost.

The Dragon Flyer is also a good investment providing more than a 30% return on capital. This assumes a <$250 million total mission cost and a $700 million revenue event (i.e. when the customer pays for the asteroid once it is delivered). The investment time horizon is four years.

The Dragon Flyer will provide a 30% return on capital for a forward-thinking aerospace corporation.

A 30% return is probably too low to attract venture capitalists. However, it is high enough to attract investment from mining, aerospace or utility corporations. See the chart below:

Type of Investor Internal Rate of Return Expected by Investor Total Paid to Investor over Four Year Time Horizon Profit Realized By The Dragon Flyer*
Free money 0% $0 $456,300,000
Kind venture capitalist 41% $719,534,390.36 -$263,234,390
Realistic venture capitalist >100% $3,655,500,000.00 -$3,199,200,000
Commercial gold mine ~30% $452,331,570.00 $3,968,430
Aerospace project e.g. Airbus 380 <19% $245,001,165.48 $211,298,835
New nuclear power plant <17% $212,966,313.08 $243,333,68
*For the purposes of this chart, the investor’s IRR is essentially the “interest rate” at which the venture borrows money from the investor i.e. no additional fees or costs are included in the borrowing costs.


The Dragon Flyer will provide a rate of return higher than recent aerospace projects like the Airbus 380 and will require a far lower capital outlay. In conclusion, the Dragon Flyer is an attractive project for a forward-thinking, innovative aerospace corporation.

To read more about the investment potential of the Dragon Flyer, download the full paper here for free.

Another Dragon delay – no big deal.

Another month, another Dragon launch delay. The second Dragon-ISS test flight (and third Falcon 9 flight, ever) will not occur before March 20. It was originally scheduled for January. But do I look worried? Not at all. This flight will combine two test flights into one and thus requires “an insane amount” of testing and preparation, as described by Elon Musk. This need for testing and combining two flights into one is the reason for the delay. However, because it will kill two birds with one stone, accomplish two test flights at once, SpaceX may actually be ahead of its development schedule after a successful late March/early April launch. So this delay, in the long run, is no big deal.

What, me worry (about the Dragon development schedule)?

Conspiracy theory alert: could SpaceX be planning its first cargo run to ISS during election season in order to give a boost to NASA’s commercial space efforts and thus Pres. Obama?

It’s back of the envelope fun time!

Many space enthusiasts propose extracting precious metals* from asteroids as way to pay for space development. Other space enthusiasts argue that water should be the target of asteroid miners. Mark Sonter has done a particularly thorough job arguing in favor of water, as opposed to precious metals. Personally, I’m agnostic. However, I did some back of the envelope calculations regarding both scenarios. Here they are:

Asteroid prospecting - Image courtesy of NASA

Water

Let’s assume we get an investor to spend $500 million on an asteroid water harvesting mission. That includes the investor’s profit and all mission costs. How much water could we get for that amount?

The competition is water launched from Earth. NASA just bought 12 Falcon 9 launches for $1.6 Billion. That’s $134 million per launch (rounded up) or approximately $2342/lb launched to Low Earth Orbit (LEO). Let’s say we sell our asteroid harvested water for $2000/lb in order to  beat the competition.

$500,000,000 total mission cost / $2000/lb of water = 250,000 lbs of water.

This is slightly less than eleven Falcon 9 launches worth of water. So now, of course, the big question is can one profitably sell asteroid-harvested water for $2000/lb? Dunno. This is just back of the envelope play time, not real research. But what about the shiny metal stuff? How might that work out?

Gold

This time around, instead of an investor, let’s pretend our super-rich uncle hands you a check for $500 million, musses up your hair, and says, “Go get me some gold in space, kiddo!” So you round up Elon Musk and Burt Rutan and a bunch of crazy wild-eyed geniuses and you cobble together a mission. A few years later you wrangle a gold-bearing asteroid in LEO. How much gold have you collected? Hope you still have some room left on the back of that envelope…

Oh good, plenty of space.

Let’s assume you’re not going to deorbit the asteroid, but rather sell it to another entity that will extract the gold in orbit (you’ll see why later**). So, instead of the market price, you sell it for $500/troy ounce to give the mining entity some room for their own costs and profit. There are 32.15 troy ounces in one kilogram. Therefore:

$500/troy ounce x 32.15 troy ounces/kg = $16,075/kg

So, how much gold do we need to mine in order to break even?

$500,000,000/$16,075 = 31,105 kg of gold to break even

Uncle Moneybags striking it rich.

Chances are only a portion of the asteroid will actually be gold. Let’s assume a very optimistic 5% concentration of gold in our asteroid. So that means to get 31,105 kg of gold to break even, the rock is 622,100 total kg. If we assume a density of 1000 kg/m3 (total guess, and it makes the math easy) for the gold-bearing asteroidal material then the asteroid is 622.1 m3. Therefore, the diameter of the asteroid is a surprisingly manageable 10.6 meters. A space rock about the size of a house could be worth $500 million, in theory at least.

A space rock about the size of a house could be worth $500 million, in theory at least.

Hmm maybe this will work. Use this handy calculator to figure out how to make Uncle Moneybags some profit once a gold-bearing asteroid is discovered in near Earth orbit.

*Wait wait wait – what about platinum?!? All those links at the beginning of the post talk about platinum, and the associated platinum group metals, as being the best target for asteroid miners. Well, the price of gold right now is $1730.75 per troy ounce. Platinum? $1652 per troy ounce. There may be compelling reasons for pursuing the less-expensive platinum but, at least for back-of-the-envelope fun time, I prefer to use the shiny metal with the higher market price.

**I am highly skeptical that $500 million is enough money to both capture the asteroid and place mining infrastructure in orbit or figure out a way to safely deorbit an asteroid 10.6 meters in diameter. Let someone else with deeper pockets figure it out.

The Dragon Flyer is cost-effective.

By 2014 various national governments will have launched six sample return missions to asteroids or comets. This marathon of sample return missions began in 1999 with the American Genesis mission which returned miniscule samples of solar wind. This cavalcade will conclude with the Japanese Hayabusa 2 mission which is proposed for launch in 2014. In between those missions are Stardust, Hayabusa, Fobos-Grunt and OSIRIS-REx. All of these missions were designed to return a total of less than 7 kilograms of asteroidal or cometary material back to Earth for analysis.

The Hayabusa Mission.

What did that 7 kilograms of material cost? In other words, what did the national governments of Japan, Russia and the United States spend on those six missions? Over $1.9 billion dollars.

The Dragon Flyer, on the other hand, will cost much less. It is proposed that the payload (i.e. the captured asteroid) be sold to a national government or space agency like NASA or the ESA. The target price for 3000 kilograms of pristine asteroidal material:   $700 million.

This is $300 million less than what NASA will pay for the OSIRIS-REx return mission which will return only 2.1 kilograms of asteroidal material.

Furthermore, it is a risk-free expenditure for whatever entity decides to purchase the asteroid. Should NASA agree to purchase the asteroid, it will not have to spend one penny “up front.” The risk of the venture will be borne by the private backers and NASA will only have to pay once the asteroid has been safely returned to Earth. Contrast this with the recent Fobos-Grunt sample return mission – the Russian government expended over $160 million on a space probe that failed to leave low Earth orbit due to a glitch. That is $160 million lost. However, should NASA agree to purchase the Dragon Flyer’s payload and should it subsequently fail, NASA will not have lost a dime (except the opportunity costs associated with the funding – a negligible penalty). Instead, the backers of the mission will have lost money, and NASA will be free to re-obligate that $700 million to other projects.

But what if the Dragon Flyer is a success? What will the mission backers gain? This will be discussed in the next post.

Click here and fill out the form to read the full report.

Quality AND quantity

Dragon Flyer will not only return asteroidal material of a higher quality than all other previous space probes, but it will also return more of it. A lot more.

Between 1999 and 2014, national governments will have commissioned six asteroid or comet sample return missions. They will have returned to Earth, in total, less than seven kilograms of material.

Dragon Flyer, on the other hand, will return up to 3000 kilograms of asteroidal material. This is more than 400 times greater than what all other asteroid and comet sample missions will return between 1999 and 2014. This is also more than seven times the amount of lunar material returned by the Apollo missions.

In the next post I will begin discussing total project costs. This will show that despite returning more material, Dragon Flyer will do so at a much lower cost than comparable missions.

Remember, you can download the entire paper here, for free.

Why capture an asteroid?

Returning an intact asteroid to Earth will provide benefits to both the space development community as well as to the greater scientific community.

Astronomers in particular attach great value to the idea of studying an intact asteroid. Asteroids are usually billions of years old and are considered time capsules that can provide details about how the solar system formed. However, all asteroid or comet samples currently available for study are less-than-ideal. Most samples are derived from asteroids that have crashed to Earth  (meteorites) and thus have been deformed and melted by their fiery path through the atmosphere. As for samples collected by robotic probes in space, they are usually miniscule in size and, as such, do not provide the full story of the asteroid being sampled. In fact, to date, less than 7 kilograms of asteroidal and cometary material has been, or is planned to be, collected in space by robotic probes.

Numerous astronomers have indicated their desire to study a large, pristine, intact asteroid. But perhaps Jeremie Vauballion, of the Paris Observatory, said it best:

“When found, such an asteroid will immediately raise the question whether or not we should go, and I’m ready to bet that many astronomers will argue that we definitely have to go!” Vaubaillon said in an email [to Space.com]. “The reason is simple: What astronomers would not want to have a full and intact (unaltered by any physical process) piece of space rock? [emphasis added] Meteorites are all altered because they go through our atmosphere. The only piece of asteroid we have comes from the Japanese Hayabusa mission (a few grams at the very most). The comet grains the Stardust mission got back from comet Wild 2 were all altered.”

Benefits to the space development community should be obvious: asteroids represent a rich source of raw materials for future space communities. They are numerous, easier to access than other raw material sources (like the Moon), and small enough to exploit with relatively little equipment. Dragon Flyer will be the first step in learning how to manipulate and capture what could be a source of raw materials for future space communities.

The full paper has significantly more information from the scientific community about their desire to study an intact asteroid.

Introducing: The Dragon Flyer

The Dragon Flyer will be the first privately-financed deep-space mission. It will capture an entire asteroid and return it to Earth, intact, for analysis. My first set of posts will describe how this can be done safely and profitably.

However, if you don’t want to wait for me to post, you can download the entire paper here, for free.