Tag Archives: additive manufacturing

Bleeding Edge Developments in Space Launch

One of the least known and most exciting developments in the past year is the resurrection of the idea of using giant tubes or guns to launch cargo into space. This is not a new idea.  Jules Verne proposed the idea in 1856 in his novel From the Earth to the Moon.  It’s still highly suspect and implausible.  The commonly accepted knowledge about gun launchers is that its very hard to pack enough punch into a gun to get a payload to orbit without the gun blowing up in the process. And even if you could build a big enough and stable enough gun, the acceleration would destroy the payload inside the projectile.

But This Orbital Life is aware of at least two very well-capitalized and highly-credentialed companies working on this idea: 8 Rivers Capital and Green Launch. There are unsubstantiated rumors of other companies as well, although I was unable to find any proof online.

There is increased commercial interest in developing ground-based tube-launcher technologies.

There is increased interest in this field because of the skyrocketing demand for small satellite launches to orbit. If gun launchers can be perfected (a big if), they could theoretically launch small payloads to orbit every few minutes rather than every few weeks or months. And they could arguably do it much cheaper than conventional rockets, which are finicky, complex vehicles full of expensive rockets and electronics.

But we’re not interested in launching satellites to space. The value of gun launcher technology to space settlement is that it could cheaply and regularly launch feedstock for additive manufacturing facilities in orbit. 3D printers need lots of plastic and aluminum to operate. Plastic and aluminum feedstock would not mind the high acceleration experienced during a gun launch. In fact, the projectile itself could theoretically be ground up and recycled into 3D printer feedstock. And 3D printing in space is a critical precursor to orbital space settlement.

The value of gun launcher technology is that it would be ideal for launching feedstock to additive manufacturing facilities in orbit.

In the next post I will discuss the concept of space settlement precursors.

Part I: The pros and cons of Rockets for delivering orbital raw materials

In a previous post I described the four new options for amassing raw materials in orbit for the purpose of space development. They are: using rockets to lift stuff up from Earth, using mass drivers on the moon to shoot regolith into orbit, capturing asteroids a la Planetary Resources, and constructing a lunar space elevator a la LiftPort to transfer lunar ore into orbit. In this post I will describe the basic advantages and disadvantages of each method.

The goal here is to determine the fastest and most cost-efficient method for collecting hundreds of tons of raw material in Earth orbit. Hundreds of tons – if not thousands – are necessary to manufacture the large structures necessary to develop space i.e. to build a self-sustainable and self-replicating civilization in orbit. Let’s talk pros and cons one by one:

I. Rockets – There are several big benefits to using rockets:

  1. Proven technology with a deep market: rockets are proven and there are lots of vendors to choose from. It’s the “devil we know” versus the other technologies which are all unproven.
  2. Direct to orbit: rockets are the only option available to boost items directly from the Earth’s surface. This, in theory, allows one to boost finished structures to orbit, skipping the raw material/manufacturing stage. This is both a blessing and a curse: while having some finished products in orbit will be useful (Bigelow modules and 3d printers immediately come to mind), especially in the early stages of space development, ultimately the goal is to build an indigenous manufacturing base in orbit, not just boost everything up from Earth. Also, rockets are the only way to get people into orbit!

However, the major drawback to using rockets is, of course, their expense. Rockets are ultimately too expensive to boost anything except the highest value cargo. This is reef that every space development has foundered on since the beginning of the space age.

Future posts will discuss mass drivers, asteroid capture and lunar space elevators.